Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvlem Structured version   Visualization version   GIF version

Theorem elcnvcnvlem 40883
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))

Proof of Theorem elcnvcnvlem
StepHypRef Expression
1 cnvcnv 6055 . . . 4 𝐵 = (𝐵 ∩ (V × V))
2 incom 4115 . . . 4 (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵)
31, 2eqtri 2765 . . 3 𝐵 = ((V × V) ∩ 𝐵)
43eleq2i 2829 . 2 (𝐴𝐵𝐴 ∈ ((V × V) ∩ 𝐵))
5 elinlem 40882 . 2 (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
64, 5bitri 278 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2110  Vcvv 3408  cin 3865   I cid 5454   × cxp 5549  ccnv 5550  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator