Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvlem Structured version   Visualization version   GIF version

Theorem elcnvcnvlem 43588
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))

Proof of Theorem elcnvcnvlem
StepHypRef Expression
1 cnvcnv 6213 . . . 4 𝐵 = (𝐵 ∩ (V × V))
2 incom 4216 . . . 4 (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵)
31, 2eqtri 2762 . . 3 𝐵 = ((V × V) ∩ 𝐵)
43eleq2i 2830 . 2 (𝐴𝐵𝐴 ∈ ((V × V) ∩ 𝐵))
5 elinlem 43587 . 2 (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
64, 5bitri 275 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2105  Vcvv 3477  cin 3961   I cid 5581   × cxp 5686  ccnv 5687  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator