| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvcnvlem | Structured version Visualization version GIF version | ||
| Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
| Ref | Expression |
|---|---|
| elcnvcnvlem | ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6212 | . . . 4 ⊢ ◡◡𝐵 = (𝐵 ∩ (V × V)) | |
| 2 | incom 4209 | . . . 4 ⊢ (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵) | |
| 3 | 1, 2 | eqtri 2765 | . . 3 ⊢ ◡◡𝐵 = ((V × V) ∩ 𝐵) |
| 4 | 3 | eleq2i 2833 | . 2 ⊢ (𝐴 ∈ ◡◡𝐵 ↔ 𝐴 ∈ ((V × V) ∩ 𝐵)) |
| 5 | elinlem 43611 | . 2 ⊢ (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | |
| 6 | 4, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 ∩ cin 3950 I cid 5577 × cxp 5683 ◡ccnv 5684 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |