Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvlem Structured version   Visualization version   GIF version

Theorem elcnvcnvlem 43093
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))

Proof of Theorem elcnvcnvlem
StepHypRef Expression
1 cnvcnv 6191 . . . 4 𝐵 = (𝐵 ∩ (V × V))
2 incom 4195 . . . 4 (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵)
31, 2eqtri 2753 . . 3 𝐵 = ((V × V) ∩ 𝐵)
43eleq2i 2817 . 2 (𝐴𝐵𝐴 ∈ ((V × V) ∩ 𝐵))
5 elinlem 43092 . 2 (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
64, 5bitri 274 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2098  Vcvv 3463  cin 3939   I cid 5569   × cxp 5670  ccnv 5671  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator