Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvcnvlem | Structured version Visualization version GIF version |
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
elcnvcnvlem | ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv 6092 | . . . 4 ⊢ ◡◡𝐵 = (𝐵 ∩ (V × V)) | |
2 | incom 4139 | . . . 4 ⊢ (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵) | |
3 | 1, 2 | eqtri 2767 | . . 3 ⊢ ◡◡𝐵 = ((V × V) ∩ 𝐵) |
4 | 3 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ ◡◡𝐵 ↔ 𝐴 ∈ ((V × V) ∩ 𝐵)) |
5 | elinlem 41159 | . 2 ⊢ (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) | |
6 | 4, 5 | bitri 274 | 1 ⊢ (𝐴 ∈ ◡◡𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 I cid 5487 × cxp 5586 ◡ccnv 5587 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |