Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvlem Structured version   Visualization version   GIF version

Theorem elcnvcnvlem 43623
Description: Two ways to say a set is a member of the converse of the converse of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvlem (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))

Proof of Theorem elcnvcnvlem
StepHypRef Expression
1 cnvcnv 6181 . . . 4 𝐵 = (𝐵 ∩ (V × V))
2 incom 4184 . . . 4 (𝐵 ∩ (V × V)) = ((V × V) ∩ 𝐵)
31, 2eqtri 2758 . . 3 𝐵 = ((V × V) ∩ 𝐵)
43eleq2i 2826 . 2 (𝐴𝐵𝐴 ∈ ((V × V) ∩ 𝐵))
5 elinlem 43622 . 2 (𝐴 ∈ ((V × V) ∩ 𝐵) ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
64, 5bitri 275 1 (𝐴𝐵 ↔ (𝐴 ∈ (V × V) ∧ ( I ‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  Vcvv 3459  cin 3925   I cid 5547   × cxp 5652  ccnv 5653  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator