Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinlem Structured version   Visualization version   GIF version

Theorem elinlem 41230
Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.)
Assertion
Ref Expression
elinlem (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))

Proof of Theorem elinlem
StepHypRef Expression
1 elin 3905 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
2 fvi 6864 . . . . 5 (𝐴𝐵 → ( I ‘𝐴) = 𝐴)
32eqcomd 2739 . . . 4 (𝐴𝐵𝐴 = ( I ‘𝐴))
43eleq1d 2818 . . 3 (𝐴𝐵 → (𝐴𝐶 ↔ ( I ‘𝐴) ∈ 𝐶))
54pm5.32i 574 . 2 ((𝐴𝐵𝐴𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))
61, 5bitri 274 1 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2101  cin 3888   I cid 5490  cfv 6447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-iota 6399  df-fun 6449  df-fv 6455
This theorem is referenced by:  elcnvcnvlem  41231
  Copyright terms: Public domain W3C validator