Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinlem Structured version   Visualization version   GIF version

Theorem elinlem 41095
Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.)
Assertion
Ref Expression
elinlem (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))

Proof of Theorem elinlem
StepHypRef Expression
1 elin 3899 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
2 fvi 6826 . . . . 5 (𝐴𝐵 → ( I ‘𝐴) = 𝐴)
32eqcomd 2744 . . . 4 (𝐴𝐵𝐴 = ( I ‘𝐴))
43eleq1d 2823 . . 3 (𝐴𝐵 → (𝐴𝐶 ↔ ( I ‘𝐴) ∈ 𝐶))
54pm5.32i 574 . 2 ((𝐴𝐵𝐴𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))
61, 5bitri 274 1 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  cin 3882   I cid 5479  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  elcnvcnvlem  41096
  Copyright terms: Public domain W3C validator