| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elinlem | Structured version Visualization version GIF version | ||
| Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| elinlem | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3913 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | fvi 6898 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ( I ‘𝐴) = 𝐴) | |
| 3 | 2 | eqcomd 2737 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 = ( I ‘𝐴)) |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ↔ ( I ‘𝐴) ∈ 𝐶)) |
| 5 | 4 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ( I ‘𝐴) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∩ cin 3896 I cid 5508 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: elcnvcnvlem 43702 |
| Copyright terms: Public domain | W3C validator |