Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinlem Structured version   Visualization version   GIF version

Theorem elinlem 43587
Description: Two ways to say a set is a member of an intersection. (Contributed by RP, 19-Aug-2020.)
Assertion
Ref Expression
elinlem (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))

Proof of Theorem elinlem
StepHypRef Expression
1 elin 3930 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
2 fvi 6937 . . . . 5 (𝐴𝐵 → ( I ‘𝐴) = 𝐴)
32eqcomd 2735 . . . 4 (𝐴𝐵𝐴 = ( I ‘𝐴))
43eleq1d 2813 . . 3 (𝐴𝐵 → (𝐴𝐶 ↔ ( I ‘𝐴) ∈ 𝐶))
54pm5.32i 574 . 2 ((𝐴𝐵𝐴𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))
61, 5bitri 275 1 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ( I ‘𝐴) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cin 3913   I cid 5532  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  elcnvcnvlem  43588
  Copyright terms: Public domain W3C validator