![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfvov2 | Structured version Visualization version GIF version |
Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 4-Aug-2025.) |
Ref | Expression |
---|---|
elfvov1.o | ⊢ Rel dom 𝑂 |
elfvov1.s | ⊢ 𝑆 = (𝐼𝑂𝑅) |
elfvov1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑆‘𝑌)) |
Ref | Expression |
---|---|
elfvov2 | ⊢ (𝜑 → 𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvov1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑆‘𝑌)) | |
2 | n0i 4363 | . . 3 ⊢ (𝑋 ∈ (𝑆‘𝑌) → ¬ (𝑆‘𝑌) = ∅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ¬ (𝑆‘𝑌) = ∅) |
4 | elfvov1.s | . . . . 5 ⊢ 𝑆 = (𝐼𝑂𝑅) | |
5 | elfvov1.o | . . . . . 6 ⊢ Rel dom 𝑂 | |
6 | 5 | ovprc2 7488 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (𝐼𝑂𝑅) = ∅) |
7 | 4, 6 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑆 = ∅) |
8 | 7 | fveq1d 6922 | . . 3 ⊢ (¬ 𝑅 ∈ V → (𝑆‘𝑌) = (∅‘𝑌)) |
9 | 0fv 6964 | . . 3 ⊢ (∅‘𝑌) = ∅ | |
10 | 8, 9 | eqtrdi 2796 | . 2 ⊢ (¬ 𝑅 ∈ V → (𝑆‘𝑌) = ∅) |
11 | 3, 10 | nsyl2 141 | 1 ⊢ (𝜑 → 𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 dom cdm 5700 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: mhprcl 22170 mhpmpl 22171 mhpdeg 22172 |
Copyright terms: Public domain | W3C validator |