MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvov2 Structured version   Visualization version   GIF version

Theorem elfvov2 7433
Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 4-Aug-2025.)
Hypotheses
Ref Expression
elfvov1.o Rel dom 𝑂
elfvov1.s 𝑆 = (𝐼𝑂𝑅)
elfvov1.x (𝜑𝑋 ∈ (𝑆𝑌))
Assertion
Ref Expression
elfvov2 (𝜑𝑅 ∈ V)

Proof of Theorem elfvov2
StepHypRef Expression
1 elfvov1.x . . 3 (𝜑𝑋 ∈ (𝑆𝑌))
2 n0i 4306 . . 3 (𝑋 ∈ (𝑆𝑌) → ¬ (𝑆𝑌) = ∅)
31, 2syl 17 . 2 (𝜑 → ¬ (𝑆𝑌) = ∅)
4 elfvov1.s . . . . 5 𝑆 = (𝐼𝑂𝑅)
5 elfvov1.o . . . . . 6 Rel dom 𝑂
65ovprc2 7430 . . . . 5 𝑅 ∈ V → (𝐼𝑂𝑅) = ∅)
74, 6eqtrid 2777 . . . 4 𝑅 ∈ V → 𝑆 = ∅)
87fveq1d 6863 . . 3 𝑅 ∈ V → (𝑆𝑌) = (∅‘𝑌))
9 0fv 6905 . . 3 (∅‘𝑌) = ∅
108, 9eqtrdi 2781 . 2 𝑅 ∈ V → (𝑆𝑌) = ∅)
113, 10nsyl2 141 1 (𝜑𝑅 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  ismhp  22034  mhprcl  22037
  Copyright terms: Public domain W3C validator