MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfvov2 Structured version   Visualization version   GIF version

Theorem elfvov2 7491
Description: Utility theorem: reverse closure for any operation that results in a function. (Contributed by SN, 4-Aug-2025.)
Hypotheses
Ref Expression
elfvov1.o Rel dom 𝑂
elfvov1.s 𝑆 = (𝐼𝑂𝑅)
elfvov1.x (𝜑𝑋 ∈ (𝑆𝑌))
Assertion
Ref Expression
elfvov2 (𝜑𝑅 ∈ V)

Proof of Theorem elfvov2
StepHypRef Expression
1 elfvov1.x . . 3 (𝜑𝑋 ∈ (𝑆𝑌))
2 n0i 4363 . . 3 (𝑋 ∈ (𝑆𝑌) → ¬ (𝑆𝑌) = ∅)
31, 2syl 17 . 2 (𝜑 → ¬ (𝑆𝑌) = ∅)
4 elfvov1.s . . . . 5 𝑆 = (𝐼𝑂𝑅)
5 elfvov1.o . . . . . 6 Rel dom 𝑂
65ovprc2 7488 . . . . 5 𝑅 ∈ V → (𝐼𝑂𝑅) = ∅)
74, 6eqtrid 2792 . . . 4 𝑅 ∈ V → 𝑆 = ∅)
87fveq1d 6922 . . 3 𝑅 ∈ V → (𝑆𝑌) = (∅‘𝑌))
9 0fv 6964 . . 3 (∅‘𝑌) = ∅
108, 9eqtrdi 2796 . 2 𝑅 ∈ V → (𝑆𝑌) = ∅)
113, 10nsyl2 141 1 (𝜑𝑅 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  dom cdm 5700  Rel wrel 5705  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  mhprcl  22170  mhpmpl  22171  mhpdeg  22172
  Copyright terms: Public domain W3C validator