| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhp | Structured version Visualization version GIF version | ||
| Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| ismhp.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| ismhp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| ismhp.b | ⊢ 𝐵 = (Base‘𝑃) |
| ismhp.0 | ⊢ 0 = (0g‘𝑅) |
| ismhp.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| ismhp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ismhp | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmmhp 22024 | . . . . 5 ⊢ Rel dom mHomP | |
| 2 | ismhp.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑋 ∈ (𝐻‘𝑁)) | |
| 4 | 1, 2, 3 | elfvov1 7429 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝐼 ∈ V) |
| 5 | 1, 2, 3 | elfvov2 7430 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑅 ∈ V) |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝑋 ∈ (𝐻‘𝑁) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 7 | 6 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 8 | reldmmpl 21897 | . . . . 5 ⊢ Rel dom mPoly | |
| 9 | ismhp.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 10 | ismhp.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | 8, 9, 10 | elbasov 17186 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 13 | 12 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 14 | ismhp.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | ismhp.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 16 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
| 17 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
| 18 | ismhp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑁 ∈ ℕ0) |
| 20 | 2, 9, 10, 14, 15, 16, 17, 19 | mhpval 22026 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 21 | 20 | eleq2d 2814 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ 𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}})) |
| 22 | oveq1 7394 | . . . . 5 ⊢ (𝑓 = 𝑋 → (𝑓 supp 0 ) = (𝑋 supp 0 )) | |
| 23 | 22 | sseq1d 3978 | . . . 4 ⊢ (𝑓 = 𝑋 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 24 | 23 | elrab 3659 | . . 3 ⊢ (𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 26 | 7, 13, 25 | pm5.21nd 801 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 0gc0g 17402 Σg cgsu 17403 ℂfldccnfld 21264 mPoly cmpl 21815 mHomP cmhp 22016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 df-slot 17152 df-ndx 17164 df-base 17180 df-mpl 21820 df-mhp 22023 |
| This theorem is referenced by: ismhp2 22028 ismhp3 22029 mhpmpl 22031 mhpdeg 22032 |
| Copyright terms: Public domain | W3C validator |