| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhp | Structured version Visualization version GIF version | ||
| Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| ismhp.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| ismhp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| ismhp.b | ⊢ 𝐵 = (Base‘𝑃) |
| ismhp.0 | ⊢ 0 = (0g‘𝑅) |
| ismhp.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| ismhp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ismhp | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmmhp 22060 | . . . . 5 ⊢ Rel dom mHomP | |
| 2 | ismhp.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑋 ∈ (𝐻‘𝑁)) | |
| 4 | 1, 2, 3 | elfvov1 7441 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝐼 ∈ V) |
| 5 | 1, 2, 3 | elfvov2 7442 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑅 ∈ V) |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝑋 ∈ (𝐻‘𝑁) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 7 | 6 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 8 | reldmmpl 21933 | . . . . 5 ⊢ Rel dom mPoly | |
| 9 | ismhp.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 10 | ismhp.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | 8, 9, 10 | elbasov 17220 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 13 | 12 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 14 | ismhp.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | ismhp.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 16 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
| 17 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
| 18 | ismhp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑁 ∈ ℕ0) |
| 20 | 2, 9, 10, 14, 15, 16, 17, 19 | mhpval 22062 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 21 | 20 | eleq2d 2819 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ 𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}})) |
| 22 | oveq1 7406 | . . . . 5 ⊢ (𝑓 = 𝑋 → (𝑓 supp 0 ) = (𝑋 supp 0 )) | |
| 23 | 22 | sseq1d 3988 | . . . 4 ⊢ (𝑓 = 𝑋 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 24 | 23 | elrab 3669 | . . 3 ⊢ (𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 26 | 7, 13, 25 | pm5.21nd 801 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3413 Vcvv 3457 ⊆ wss 3924 ◡ccnv 5650 “ cima 5654 ‘cfv 6527 (class class class)co 7399 supp csupp 8153 ↑m cmap 8834 Fincfn 8953 ℕcn 12232 ℕ0cn0 12493 Basecbs 17213 ↾s cress 17236 0gc0g 17438 Σg cgsu 17439 ℂfldccnfld 21300 mPoly cmpl 21851 mHomP cmhp 22052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-1cn 11179 ax-addcl 11181 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-nn 12233 df-n0 12494 df-slot 17186 df-ndx 17198 df-base 17214 df-mpl 21856 df-mhp 22059 |
| This theorem is referenced by: ismhp2 22064 ismhp3 22065 mhpmpl 22067 mhpdeg 22068 |
| Copyright terms: Public domain | W3C validator |