MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismhp Structured version   Visualization version   GIF version

Theorem ismhp 22063
Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
ismhp.h 𝐻 = (𝐼 mHomP 𝑅)
ismhp.p 𝑃 = (𝐼 mPoly 𝑅)
ismhp.b 𝐵 = (Base‘𝑃)
ismhp.0 0 = (0g𝑅)
ismhp.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ismhp.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
ismhp (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
Distinct variable groups:   ,𝐼   𝐷,𝑔   𝑔,𝑁   𝑔,
Allowed substitution hints:   𝜑(𝑔,)   𝐵(𝑔,)   𝐷()   𝑃(𝑔,)   𝑅(𝑔,)   𝐻(𝑔,)   𝐼(𝑔)   𝑁()   𝑋(𝑔,)   0 (𝑔,)

Proof of Theorem ismhp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 reldmmhp 22060 . . . . 5 Rel dom mHomP
2 ismhp.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
3 id 22 . . . . 5 (𝑋 ∈ (𝐻𝑁) → 𝑋 ∈ (𝐻𝑁))
41, 2, 3elfvov1 7441 . . . 4 (𝑋 ∈ (𝐻𝑁) → 𝐼 ∈ V)
51, 2, 3elfvov2 7442 . . . 4 (𝑋 ∈ (𝐻𝑁) → 𝑅 ∈ V)
64, 5jca 511 . . 3 (𝑋 ∈ (𝐻𝑁) → (𝐼 ∈ V ∧ 𝑅 ∈ V))
76anim2i 617 . 2 ((𝜑𝑋 ∈ (𝐻𝑁)) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)))
8 reldmmpl 21933 . . . . 5 Rel dom mPoly
9 ismhp.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
10 ismhp.b . . . . 5 𝐵 = (Base‘𝑃)
118, 9, 10elbasov 17220 . . . 4 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1211adantr 480 . . 3 ((𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}) → (𝐼 ∈ V ∧ 𝑅 ∈ V))
1312anim2i 617 . 2 ((𝜑 ∧ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)))
14 ismhp.0 . . . . 5 0 = (0g𝑅)
15 ismhp.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
16 simprl 770 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V)
17 simprr 772 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V)
18 ismhp.n . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1918adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑁 ∈ ℕ0)
202, 9, 10, 14, 15, 16, 17, 19mhpval 22062 . . . 4 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐻𝑁) = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}})
2120eleq2d 2819 . . 3 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻𝑁) ↔ 𝑋 ∈ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}}))
22 oveq1 7406 . . . . 5 (𝑓 = 𝑋 → (𝑓 supp 0 ) = (𝑋 supp 0 ))
2322sseq1d 3988 . . . 4 (𝑓 = 𝑋 → ((𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} ↔ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
2423elrab 3669 . . 3 (𝑋 ∈ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}} ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}))
2521, 24bitrdi 287 . 2 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
267, 13, 25pm5.21nd 801 1 (𝜑 → (𝑋 ∈ (𝐻𝑁) ↔ (𝑋𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {crab 3413  Vcvv 3457  wss 3924  ccnv 5650  cima 5654  cfv 6527  (class class class)co 7399   supp csupp 8153  m cmap 8834  Fincfn 8953  cn 12232  0cn0 12493  Basecbs 17213  s cress 17236  0gc0g 17438   Σg cgsu 17439  fldccnfld 21300   mPoly cmpl 21851   mHomP cmhp 22052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-1cn 11179  ax-addcl 11181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-nn 12233  df-n0 12494  df-slot 17186  df-ndx 17198  df-base 17214  df-mpl 21856  df-mhp 22059
This theorem is referenced by:  ismhp2  22064  ismhp3  22065  mhpmpl  22067  mhpdeg  22068
  Copyright terms: Public domain W3C validator