| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhp | Structured version Visualization version GIF version | ||
| Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| ismhp.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| ismhp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| ismhp.b | ⊢ 𝐵 = (Base‘𝑃) |
| ismhp.0 | ⊢ 0 = (0g‘𝑅) |
| ismhp.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| ismhp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ismhp | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmmhp 22080 | . . . . 5 ⊢ Rel dom mHomP | |
| 2 | ismhp.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑋 ∈ (𝐻‘𝑁)) | |
| 4 | 1, 2, 3 | elfvov1 7452 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝐼 ∈ V) |
| 5 | 1, 2, 3 | elfvov2 7453 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑅 ∈ V) |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝑋 ∈ (𝐻‘𝑁) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 7 | 6 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 8 | reldmmpl 21953 | . . . . 5 ⊢ Rel dom mPoly | |
| 9 | ismhp.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 10 | ismhp.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | 8, 9, 10 | elbasov 17240 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 13 | 12 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 14 | ismhp.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | ismhp.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 16 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
| 17 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
| 18 | ismhp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑁 ∈ ℕ0) |
| 20 | 2, 9, 10, 14, 15, 16, 17, 19 | mhpval 22082 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 21 | 20 | eleq2d 2821 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ 𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}})) |
| 22 | oveq1 7417 | . . . . 5 ⊢ (𝑓 = 𝑋 → (𝑓 supp 0 ) = (𝑋 supp 0 )) | |
| 23 | 22 | sseq1d 3995 | . . . 4 ⊢ (𝑓 = 𝑋 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 24 | 23 | elrab 3676 | . . 3 ⊢ (𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 26 | 7, 13, 25 | pm5.21nd 801 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ⊆ wss 3931 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 ↾s cress 17256 0gc0g 17458 Σg cgsu 17459 ℂfldccnfld 21320 mPoly cmpl 21871 mHomP cmhp 22072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 df-slot 17206 df-ndx 17218 df-base 17234 df-mpl 21876 df-mhp 22079 |
| This theorem is referenced by: ismhp2 22084 ismhp3 22085 mhpmpl 22087 mhpdeg 22088 |
| Copyright terms: Public domain | W3C validator |