| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismhp | Structured version Visualization version GIF version | ||
| Description: Property of being a homogeneous polynomial. (Contributed by Steven Nguyen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| ismhp.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| ismhp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| ismhp.b | ⊢ 𝐵 = (Base‘𝑃) |
| ismhp.0 | ⊢ 0 = (0g‘𝑅) |
| ismhp.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| ismhp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| ismhp | ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmmhp 22040 | . . . . 5 ⊢ Rel dom mHomP | |
| 2 | ismhp.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑋 ∈ (𝐻‘𝑁)) | |
| 4 | 1, 2, 3 | elfvov1 7395 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝐼 ∈ V) |
| 5 | 1, 2, 3 | elfvov2 7396 | . . . 4 ⊢ (𝑋 ∈ (𝐻‘𝑁) → 𝑅 ∈ V) |
| 6 | 4, 5 | jca 511 | . . 3 ⊢ (𝑋 ∈ (𝐻‘𝑁) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 7 | 6 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐻‘𝑁)) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 8 | reldmmpl 21913 | . . . . 5 ⊢ Rel dom mPoly | |
| 9 | ismhp.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 10 | ismhp.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 11 | 8, 9, 10 | elbasov 17145 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 13 | 12 | anim2i 617 | . 2 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) → (𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V))) |
| 14 | ismhp.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 15 | ismhp.d | . . . . 5 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 16 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
| 17 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
| 18 | ismhp.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑁 ∈ ℕ0) |
| 20 | 2, 9, 10, 14, 15, 16, 17, 19 | mhpval 22042 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐻‘𝑁) = {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}}) |
| 21 | 20 | eleq2d 2814 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ 𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}})) |
| 22 | oveq1 7360 | . . . . 5 ⊢ (𝑓 = 𝑋 → (𝑓 supp 0 ) = (𝑋 supp 0 )) | |
| 23 | 22 | sseq1d 3969 | . . . 4 ⊢ (𝑓 = 𝑋 → ((𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} ↔ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 24 | 23 | elrab 3650 | . . 3 ⊢ (𝑋 ∈ {𝑓 ∈ 𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}} ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁})) |
| 25 | 21, 24 | bitrdi 287 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| 26 | 7, 13, 25 | pm5.21nd 801 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐻‘𝑁) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 supp 0 ) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 ◡ccnv 5622 “ cima 5626 ‘cfv 6486 (class class class)co 7353 supp csupp 8100 ↑m cmap 8760 Fincfn 8879 ℕcn 12146 ℕ0cn0 12402 Basecbs 17138 ↾s cress 17159 0gc0g 17361 Σg cgsu 17362 ℂfldccnfld 21279 mPoly cmpl 21831 mHomP cmhp 22032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-n0 12403 df-slot 17111 df-ndx 17123 df-base 17139 df-mpl 21836 df-mhp 22039 |
| This theorem is referenced by: ismhp2 22044 ismhp3 22045 mhpmpl 22047 mhpdeg 22048 |
| Copyright terms: Public domain | W3C validator |