Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovprc2 | Structured version Visualization version GIF version |
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc2 | ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7293 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 dom cdm 5580 Rel wrel 5585 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: ressbasss 16876 ress0 16879 wunress 16886 wunressOLD 16887 0rest 17057 firest 17060 subcmn 19353 dprdval0prc 19520 zrhval 20621 dsmmval2 20853 psrbas 21057 psr1val 21267 vr1val 21273 ply1ascl 21339 evl1fval 21404 restbas 22217 resstopn 22245 deg1fval 25150 wwlksn 28103 submomnd 31238 suborng 31416 bj-restsnid 35185 1aryenef 45879 2aryenef 45890 |
Copyright terms: Public domain | W3C validator |