| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc2 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc2 | ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7469 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 dom cdm 5685 Rel wrel 5690 (class class class)co 7431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-rel 5692 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: elfvov2 7474 ressbasssg 17282 ressbasssOLD 17285 ress0 17289 wunress 17295 wunressOLD 17296 0rest 17474 firest 17477 subcmn 19855 dprdval0prc 20022 zrhval 21518 dsmmval2 21756 psrbas 21953 psr1val 22187 vr1val 22193 ply1ascl 22261 evl1fval 22332 restbas 23166 resstopn 23194 deg1fval 26119 wwlksn 29857 submomnd 33087 suborng 33345 bj-restsnid 37088 1aryenef 48566 2aryenef 48577 |
| Copyright terms: Public domain | W3C validator |