MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc2 Structured version   Visualization version   GIF version

Theorem ovprc2 7389
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc2 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7387 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl5 159 1 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  dom cdm 5619  Rel wrel 5624  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-dm 5629  df-iota 6438  df-fv 6490  df-ov 7352
This theorem is referenced by:  elfvov2  7392  ressbasssg  17148  ressbasssOLD  17151  ress0  17154  wunress  17160  0rest  17333  firest  17336  subcmn  19716  dprdval0prc  19883  submomnd  20011  suborng  20761  zrhval  21414  dsmmval2  21643  psrbas  21840  psr1val  22068  vr1val  22074  ply1ascl  22142  evl1fval  22213  restbas  23043  resstopn  23071  deg1fval  25983  wwlksn  29782  bj-restsnid  37065  1aryenef  48634  2aryenef  48645  prcof1  49377
  Copyright terms: Public domain W3C validator