| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc2 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc2 | ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7407 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 dom cdm 5631 Rel wrel 5636 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: elfvov2 7412 ressbasssg 17183 ressbasssOLD 17186 ress0 17189 wunress 17195 0rest 17368 firest 17371 subcmn 19743 dprdval0prc 19910 zrhval 21393 dsmmval2 21621 psrbas 21818 psr1val 22046 vr1val 22052 ply1ascl 22120 evl1fval 22191 restbas 23021 resstopn 23049 deg1fval 25961 wwlksn 29740 submomnd 32997 suborng 33266 bj-restsnid 37048 1aryenef 48607 2aryenef 48618 prcof1 49350 |
| Copyright terms: Public domain | W3C validator |