MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc2 Structured version   Visualization version   GIF version

Theorem ovprc2 7409
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc2 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7407 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl5 159 1 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  dom cdm 5631  Rel wrel 5636  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by:  elfvov2  7412  ressbasssg  17183  ressbasssOLD  17186  ress0  17189  wunress  17195  0rest  17368  firest  17371  subcmn  19751  dprdval0prc  19918  submomnd  20046  suborng  20796  zrhval  21449  dsmmval2  21678  psrbas  21875  psr1val  22103  vr1val  22109  ply1ascl  22177  evl1fval  22248  restbas  23078  resstopn  23106  deg1fval  26018  wwlksn  29817  bj-restsnid  37068  1aryenef  48627  2aryenef  48638  prcof1  49370
  Copyright terms: Public domain W3C validator