![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovprc2 | Structured version Visualization version GIF version |
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ovprc1.1 | ⊢ Rel dom 𝐹 |
Ref | Expression |
---|---|
ovprc2 | ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
3 | 2 | ovprc 7468 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 dom cdm 5688 Rel wrel 5693 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-dm 5698 df-iota 6515 df-fv 6570 df-ov 7433 |
This theorem is referenced by: elfvov2 7473 ressbasssg 17281 ressbasssOLD 17284 ress0 17288 wunress 17295 wunressOLD 17296 0rest 17475 firest 17478 subcmn 19869 dprdval0prc 20036 zrhval 21535 dsmmval2 21773 psrbas 21970 psr1val 22202 vr1val 22208 ply1ascl 22276 evl1fval 22347 restbas 23181 resstopn 23209 deg1fval 26133 wwlksn 29866 submomnd 33069 suborng 33324 bj-restsnid 37069 1aryenef 48494 2aryenef 48505 |
Copyright terms: Public domain | W3C validator |