| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovprc2 | Structured version Visualization version GIF version | ||
| Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| ovprc1.1 | ⊢ Rel dom 𝐹 |
| Ref | Expression |
|---|---|
| ovprc2 | ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
| 2 | ovprc1.1 | . . 3 ⊢ Rel dom 𝐹 | |
| 3 | 2 | ovprc 7387 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅) |
| 4 | 1, 3 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 dom cdm 5619 Rel wrel 5624 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: elfvov2 7392 ressbasssg 17148 ressbasssOLD 17151 ress0 17154 wunress 17160 0rest 17333 firest 17336 subcmn 19716 dprdval0prc 19883 submomnd 20011 suborng 20761 zrhval 21414 dsmmval2 21643 psrbas 21840 psr1val 22068 vr1val 22074 ply1ascl 22142 evl1fval 22213 restbas 23043 resstopn 23071 deg1fval 25983 wwlksn 29782 bj-restsnid 37065 1aryenef 48634 2aryenef 48645 prcof1 49377 |
| Copyright terms: Public domain | W3C validator |