MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovprc2 Structured version   Visualization version   GIF version

Theorem ovprc2 7386
Description: The value of an operation when the second argument is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
ovprc1.1 Rel dom 𝐹
Assertion
Ref Expression
ovprc2 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ovprc2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
2 ovprc1.1 . . 3 Rel dom 𝐹
32ovprc 7384 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐹𝐵) = ∅)
41, 3nsyl5 159 1 𝐵 ∈ V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  dom cdm 5614  Rel wrel 5619  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-iota 6437  df-fv 6489  df-ov 7349
This theorem is referenced by:  elfvov2  7389  ressbasssg  17148  ressbasssOLD  17151  ress0  17154  wunress  17160  0rest  17333  firest  17336  subcmn  19749  dprdval0prc  19916  submomnd  20044  suborng  20791  zrhval  21444  dsmmval2  21673  psrbas  21870  psr1val  22098  vr1val  22104  ply1ascl  22172  evl1fval  22243  restbas  23073  resstopn  23101  deg1fval  26012  wwlksn  29815  bj-restsnid  37131  1aryenef  48756  2aryenef  48767  prcof1  49499
  Copyright terms: Public domain W3C validator