MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhprcl Structured version   Visualization version   GIF version

Theorem mhprcl 22079
Description: Reverse closure for homogeneous polynomials, use elfvov1 7445 and elfvov2 7446 with reldmmhp 22073 for the reverse closure of 𝐼 and 𝑅. (Contributed by SN, 4-Aug-2025.)
Hypotheses
Ref Expression
mhprcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhprcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhprcl (𝜑𝑁 ∈ ℕ0)

Proof of Theorem mhprcl
Dummy variables 𝑓 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhprcl.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhprcl.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
3 eqid 2735 . . . . 5 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
4 eqid 2735 . . . . 5 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
5 eqid 2735 . . . . 5 (0g𝑅) = (0g𝑅)
6 eqid 2735 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 reldmmhp 22073 . . . . . 6 Rel dom mHomP
87, 2, 1elfvov1 7445 . . . . 5 (𝜑𝐼 ∈ V)
97, 2, 1elfvov2 7446 . . . . 5 (𝜑𝑅 ∈ V)
102, 3, 4, 5, 6, 8, 9mhpfval 22074 . . . 4 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
1110fveq1d 6877 . . 3 (𝜑 → (𝐻𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})‘𝑁))
121, 11eleqtrd 2836 . 2 (𝜑𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})‘𝑁))
13 eqid 2735 . . 3 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
1413mptrcl 6994 . 2 (𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})‘𝑁) → 𝑁 ∈ ℕ0)
1512, 14syl 17 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  cmpt 5201  ccnv 5653  cima 5657  cfv 6530  (class class class)co 7403   supp csupp 8157  m cmap 8838  Fincfn 8957  cn 12238  0cn0 12499  Basecbs 17226  s cress 17249  0gc0g 17451   Σg cgsu 17452  fldccnfld 21313   mPoly cmpl 21864   mHomP cmhp 22065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-1cn 11185  ax-addcl 11187
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-nn 12239  df-n0 12500  df-mhp 22072
This theorem is referenced by:  mhpmpl  22080  mhpdeg  22081  mhpmulcl  22085  mhppwdeg  22086  mhpaddcl  22087  mhpinvcl  22088  mhpvscacl  22090  mhpind  42564  mhphf  42567
  Copyright terms: Public domain W3C validator