MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhprcl Structured version   Visualization version   GIF version

Theorem mhprcl 22037
Description: Reverse closure for homogeneous polynomials, use elfvov1 7432 and elfvov2 7433 with reldmmhp 22031 for the reverse closure of 𝐼 and 𝑅. (Contributed by SN, 4-Aug-2025.)
Hypotheses
Ref Expression
mhprcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhprcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhprcl (𝜑𝑁 ∈ ℕ0)

Proof of Theorem mhprcl
Dummy variables 𝑓 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhprcl.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
2 mhprcl.h . . . . 5 𝐻 = (𝐼 mHomP 𝑅)
3 eqid 2730 . . . . 5 (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅)
4 eqid 2730 . . . . 5 (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅))
5 eqid 2730 . . . . 5 (0g𝑅) = (0g𝑅)
6 eqid 2730 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 reldmmhp 22031 . . . . . 6 Rel dom mHomP
87, 2, 1elfvov1 7432 . . . . 5 (𝜑𝐼 ∈ V)
97, 2, 1elfvov2 7433 . . . . 5 (𝜑𝑅 ∈ V)
102, 3, 4, 5, 6, 8, 9mhpfval 22032 . . . 4 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
1110fveq1d 6863 . . 3 (𝜑 → (𝐻𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})‘𝑁))
121, 11eleqtrd 2831 . 2 (𝜑𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})‘𝑁))
13 eqid 2730 . . 3 (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})
1413mptrcl 6980 . 2 (𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}})‘𝑁) → 𝑁 ∈ ℕ0)
1512, 14syl 17 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  ccnv 5640  cima 5644  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  0gc0g 17409   Σg cgsu 17410  fldccnfld 21271   mPoly cmpl 21822   mHomP cmhp 22023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-n0 12450  df-mhp 22030
This theorem is referenced by:  mhpmpl  22038  mhpdeg  22039  mhpmulcl  22043  mhppwdeg  22044  mhpaddcl  22045  mhpinvcl  22046  mhpvscacl  22048  mhpind  42589  mhphf  42592
  Copyright terms: Public domain W3C validator