| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhprcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for homogeneous polynomials, use elfvov1 7445 and elfvov2 7446 with reldmmhp 22073 for the reverse closure of 𝐼 and 𝑅. (Contributed by SN, 4-Aug-2025.) |
| Ref | Expression |
|---|---|
| mhprcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhprcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhprcl | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhprcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 2 | mhprcl.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | eqid 2735 | . . . . 5 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
| 4 | eqid 2735 | . . . . 5 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2735 | . . . . 5 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | reldmmhp 22073 | . . . . . 6 ⊢ Rel dom mHomP | |
| 8 | 7, 2, 1 | elfvov1 7445 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 9 | 7, 2, 1 | elfvov2 7446 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 10 | 2, 3, 4, 5, 6, 8, 9 | mhpfval 22074 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
| 11 | 10 | fveq1d 6877 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁)) |
| 12 | 1, 11 | eleqtrd 2836 | . 2 ⊢ (𝜑 → 𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁)) |
| 13 | eqid 2735 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}}) | |
| 14 | 13 | mptrcl 6994 | . 2 ⊢ (𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁) → 𝑁 ∈ ℕ0) |
| 15 | 12, 14 | syl 17 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ⊆ wss 3926 ↦ cmpt 5201 ◡ccnv 5653 “ cima 5657 ‘cfv 6530 (class class class)co 7403 supp csupp 8157 ↑m cmap 8838 Fincfn 8957 ℕcn 12238 ℕ0cn0 12499 Basecbs 17226 ↾s cress 17249 0gc0g 17451 Σg cgsu 17452 ℂfldccnfld 21313 mPoly cmpl 21864 mHomP cmhp 22065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-n0 12500 df-mhp 22072 |
| This theorem is referenced by: mhpmpl 22080 mhpdeg 22081 mhpmulcl 22085 mhppwdeg 22086 mhpaddcl 22087 mhpinvcl 22088 mhpvscacl 22090 mhpind 42564 mhphf 42567 |
| Copyright terms: Public domain | W3C validator |