| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhprcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for homogeneous polynomials, use elfvov1 7411 and elfvov2 7412 with reldmmhp 22057 for the reverse closure of 𝐼 and 𝑅. (Contributed by SN, 4-Aug-2025.) |
| Ref | Expression |
|---|---|
| mhprcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhprcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhprcl | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhprcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 2 | mhprcl.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2729 | . . . . 5 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | reldmmhp 22057 | . . . . . 6 ⊢ Rel dom mHomP | |
| 8 | 7, 2, 1 | elfvov1 7411 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 9 | 7, 2, 1 | elfvov2 7412 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 10 | 2, 3, 4, 5, 6, 8, 9 | mhpfval 22058 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
| 11 | 10 | fveq1d 6842 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁)) |
| 12 | 1, 11 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁)) |
| 13 | eqid 2729 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}}) | |
| 14 | 13 | mptrcl 6959 | . 2 ⊢ (𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁) → 𝑁 ∈ ℕ0) |
| 15 | 12, 14 | syl 17 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ⊆ wss 3911 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 0gc0g 17378 Σg cgsu 17379 ℂfldccnfld 21296 mPoly cmpl 21848 mHomP cmhp 22049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-n0 12419 df-mhp 22056 |
| This theorem is referenced by: mhpmpl 22064 mhpdeg 22065 mhpmulcl 22069 mhppwdeg 22070 mhpaddcl 22071 mhpinvcl 22072 mhpvscacl 22074 mhpind 42575 mhphf 42578 |
| Copyright terms: Public domain | W3C validator |