| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhprcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for homogeneous polynomials, use elfvov1 7432 and elfvov2 7433 with reldmmhp 22031 for the reverse closure of 𝐼 and 𝑅. (Contributed by SN, 4-Aug-2025.) |
| Ref | Expression |
|---|---|
| mhprcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhprcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhprcl | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhprcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 2 | mhprcl.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑅)) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 6 | eqid 2730 | . . . . 5 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 7 | reldmmhp 22031 | . . . . . 6 ⊢ Rel dom mHomP | |
| 8 | 7, 2, 1 | elfvov1 7432 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ V) |
| 9 | 7, 2, 1 | elfvov2 7433 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 10 | 2, 3, 4, 5, 6, 8, 9 | mhpfval 22032 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) |
| 11 | 10 | fveq1d 6863 | . . 3 ⊢ (𝜑 → (𝐻‘𝑁) = ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁)) |
| 12 | 1, 11 | eleqtrd 2831 | . 2 ⊢ (𝜑 → 𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁)) |
| 13 | eqid 2730 | . . 3 ⊢ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}}) | |
| 14 | 13 | mptrcl 6980 | . 2 ⊢ (𝑋 ∈ ((𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝐼 mPoly 𝑅)) ∣ (𝑓 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})‘𝑁) → 𝑁 ∈ ℕ0) |
| 15 | 12, 14 | syl 17 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 ↑m cmap 8802 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 Basecbs 17186 ↾s cress 17207 0gc0g 17409 Σg cgsu 17410 ℂfldccnfld 21271 mPoly cmpl 21822 mHomP cmhp 22023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-n0 12450 df-mhp 22030 |
| This theorem is referenced by: mhpmpl 22038 mhpdeg 22039 mhpmulcl 22043 mhppwdeg 22044 mhpaddcl 22045 mhpinvcl 22046 mhpvscacl 22048 mhpind 42589 mhphf 42592 |
| Copyright terms: Public domain | W3C validator |