![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvintabd | Structured version Visualization version GIF version |
Description: Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
cnvintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
cnvintabd | ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) |
4 | 3 | bicomd 222 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓 → 𝑦 ∈ (V × V)))) |
5 | 4 | anbi1d 629 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)) ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
6 | elcnvintab 42816 | . . 3 ⊢ (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) | |
7 | vex 3477 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 7 | cnvex 7920 | . . . . 5 ⊢ ◡𝑥 ∈ V |
9 | relcnv 6103 | . . . . . 6 ⊢ Rel ◡𝑥 | |
10 | df-rel 5683 | . . . . . 6 ⊢ (Rel ◡𝑥 ↔ ◡𝑥 ⊆ (V × V)) | |
11 | 9, 10 | mpbi 229 | . . . . 5 ⊢ ◡𝑥 ⊆ (V × V) |
12 | 8, 11 | elmapintrab 42790 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
13 | 12 | elv 3479 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) |
14 | 5, 6, 13 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ 𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)})) |
15 | 14 | eqrdv 2729 | 1 ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 {crab 3431 Vcvv 3473 ⊆ wss 3948 𝒫 cpw 4602 ∩ cint 4950 × cxp 5674 ◡ccnv 5675 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7979 df-2nd 7980 |
This theorem is referenced by: clcnvlem 42837 |
Copyright terms: Public domain | W3C validator |