Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvintabd | Structured version Visualization version GIF version |
Description: Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
cnvintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
cnvintabd | ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) |
4 | 3 | bicomd 222 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓 → 𝑦 ∈ (V × V)))) |
5 | 4 | anbi1d 629 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)) ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
6 | elcnvintab 41099 | . . 3 ⊢ (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) | |
7 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 7 | cnvex 7746 | . . . . 5 ⊢ ◡𝑥 ∈ V |
9 | relcnv 6001 | . . . . . 6 ⊢ Rel ◡𝑥 | |
10 | df-rel 5587 | . . . . . 6 ⊢ (Rel ◡𝑥 ↔ ◡𝑥 ⊆ (V × V)) | |
11 | 9, 10 | mpbi 229 | . . . . 5 ⊢ ◡𝑥 ⊆ (V × V) |
12 | 8, 11 | elmapintrab 41073 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
13 | 12 | elv 3428 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) |
14 | 5, 6, 13 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ 𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)})) |
15 | 14 | eqrdv 2736 | 1 ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∩ cint 4876 × cxp 5578 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: clcnvlem 41120 |
Copyright terms: Public domain | W3C validator |