| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvintabd | Structured version Visualization version GIF version | ||
| Description: Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
| Ref | Expression |
|---|---|
| cnvintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| cnvintabd | ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) |
| 4 | 3 | bicomd 223 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓 → 𝑦 ∈ (V × V)))) |
| 5 | 4 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)) ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
| 6 | elcnvintab 43615 | . . 3 ⊢ (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) | |
| 7 | vex 3484 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | 7 | cnvex 7947 | . . . . 5 ⊢ ◡𝑥 ∈ V |
| 9 | relcnv 6122 | . . . . . 6 ⊢ Rel ◡𝑥 | |
| 10 | df-rel 5692 | . . . . . 6 ⊢ (Rel ◡𝑥 ↔ ◡𝑥 ⊆ (V × V)) | |
| 11 | 9, 10 | mpbi 230 | . . . . 5 ⊢ ◡𝑥 ⊆ (V × V) |
| 12 | 8, 11 | elmapintrab 43589 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
| 13 | 12 | elv 3485 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) |
| 14 | 5, 6, 13 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ 𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)})) |
| 15 | 14 | eqrdv 2735 | 1 ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 {crab 3436 Vcvv 3480 ⊆ wss 3951 𝒫 cpw 4600 ∩ cint 4946 × cxp 5683 ◡ccnv 5684 Rel wrel 5690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fv 6569 df-1st 8014 df-2nd 8015 |
| This theorem is referenced by: clcnvlem 43636 |
| Copyright terms: Public domain | W3C validator |