![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvintabd | Structured version Visualization version GIF version |
Description: Value of the converse of the intersection of a nonempty class. (Contributed by RP, 20-Aug-2020.) |
Ref | Expression |
---|---|
cnvintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
cnvintabd | ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ↔ 𝑦 ∈ (V × V))) |
4 | 3 | bicomd 223 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (V × V) ↔ (∃𝑥𝜓 → 𝑦 ∈ (V × V)))) |
5 | 4 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)) ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
6 | elcnvintab 43592 | . . 3 ⊢ (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ (𝑦 ∈ (V × V) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) | |
7 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 7 | cnvex 7948 | . . . . 5 ⊢ ◡𝑥 ∈ V |
9 | relcnv 6125 | . . . . . 6 ⊢ Rel ◡𝑥 | |
10 | df-rel 5696 | . . . . . 6 ⊢ (Rel ◡𝑥 ↔ ◡𝑥 ⊆ (V × V)) | |
11 | 9, 10 | mpbi 230 | . . . . 5 ⊢ ◡𝑥 ⊆ (V × V) |
12 | 8, 11 | elmapintrab 43566 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥)))) |
13 | 12 | elv 3483 | . . 3 ⊢ (𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑦 ∈ (V × V)) ∧ ∀𝑥(𝜓 → 𝑦 ∈ ◡𝑥))) |
14 | 5, 6, 13 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ ◡∩ {𝑥 ∣ 𝜓} ↔ 𝑦 ∈ ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)})) |
15 | 14 | eqrdv 2733 | 1 ⊢ (𝜑 → ◡∩ {𝑥 ∣ 𝜓} = ∩ {𝑤 ∈ 𝒫 (V × V) ∣ ∃𝑥(𝑤 = ◡𝑥 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 {crab 3433 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ∩ cint 4951 × cxp 5687 ◡ccnv 5688 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: clcnvlem 43613 |
Copyright terms: Public domain | W3C validator |