![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovmpt3imp | Structured version Visualization version GIF version |
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019.) |
Ref | Expression |
---|---|
elovmpt3imp.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ 𝐵)) |
Ref | Expression |
---|---|
elovmpt3imp | ⊢ (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4330 | . 2 ⊢ (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋𝑂𝑌)‘𝑍) ≠ ∅) | |
2 | ax-1 6 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | |
3 | elovmpt3imp.o | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ 𝐵)) | |
4 | 3 | mpondm0 7653 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) |
5 | fveq1 6890 | . . . . 5 ⊢ ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = (∅‘𝑍)) | |
6 | 0fv 6935 | . . . . 5 ⊢ (∅‘𝑍) = ∅ | |
7 | 5, 6 | eqtrdi 2783 | . . . 4 ⊢ ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = ∅) |
8 | eqneqall 2946 | . . . 4 ⊢ (((𝑋𝑂𝑌)‘𝑍) = ∅ → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
10 | 2, 9 | pm2.61i 182 | . 2 ⊢ (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
11 | 1, 10 | syl 17 | 1 ⊢ (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 Vcvv 3469 ∅c0 4318 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-dm 5682 df-iota 6494 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: elovmpt3rab1 7673 elovmptnn0wrd 14527 |
Copyright terms: Public domain | W3C validator |