|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elovmpt3imp | Structured version Visualization version GIF version | ||
| Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019.) | 
| Ref | Expression | 
|---|---|
| elovmpt3imp.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ 𝐵)) | 
| Ref | Expression | 
|---|---|
| elovmpt3imp | ⊢ (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ne0i 4341 | . 2 ⊢ (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋𝑂𝑌)‘𝑍) ≠ ∅) | |
| 2 | ax-1 6 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | |
| 3 | elovmpt3imp.o | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ 𝐵)) | |
| 4 | 3 | mpondm0 7673 | . . . 4 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅) | 
| 5 | fveq1 6905 | . . . . 5 ⊢ ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = (∅‘𝑍)) | |
| 6 | 0fv 6950 | . . . . 5 ⊢ (∅‘𝑍) = ∅ | |
| 7 | 5, 6 | eqtrdi 2793 | . . . 4 ⊢ ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = ∅) | 
| 8 | eqneqall 2951 | . . . 4 ⊢ (((𝑋𝑂𝑌)‘𝑍) = ∅ → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | |
| 9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))) | 
| 10 | 2, 9 | pm2.61i 182 | . 2 ⊢ (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| 11 | 1, 10 | syl 17 | 1 ⊢ (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 | 
| This theorem is referenced by: elovmpt3rab1 7693 elovmptnn0wrd 14597 | 
| Copyright terms: Public domain | W3C validator |