MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt3imp Structured version   Visualization version   GIF version

Theorem elovmpt3imp 7396
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmpt3imp.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀𝐵))
Assertion
Ref Expression
elovmpt3imp (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem elovmpt3imp
StepHypRef Expression
1 ne0i 4283 . 2 (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋𝑂𝑌)‘𝑍) ≠ ∅)
2 ax-1 6 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3 elovmpt3imp.o . . . . 5 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀𝐵))
43mpondm0 7380 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅)
5 fveq1 6660 . . . . 5 ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = (∅‘𝑍))
6 0fv 6700 . . . . 5 (∅‘𝑍) = ∅
75, 6syl6eq 2875 . . . 4 ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = ∅)
8 eqneqall 3025 . . . 4 (((𝑋𝑂𝑌)‘𝑍) = ∅ → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
94, 7, 83syl 18 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
102, 9pm2.61i 185 . 2 (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))
111, 10syl 17 1 (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  Vcvv 3480  c0 4276  cmpt 5132  cfv 6343  (class class class)co 7149  cmpo 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-xp 5548  df-dm 5552  df-iota 6302  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  elovmpt3rab1  7399  elovmptnn0wrd  13911
  Copyright terms: Public domain W3C validator