MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt3imp Structured version   Visualization version   GIF version

Theorem elovmpt3imp 7402
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmpt3imp.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀𝐵))
Assertion
Ref Expression
elovmpt3imp (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem elovmpt3imp
StepHypRef Expression
1 ne0i 4300 . 2 (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋𝑂𝑌)‘𝑍) ≠ ∅)
2 ax-1 6 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3 elovmpt3imp.o . . . . 5 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀𝐵))
43mpondm0 7386 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅)
5 fveq1 6669 . . . . 5 ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = (∅‘𝑍))
6 0fv 6709 . . . . 5 (∅‘𝑍) = ∅
75, 6syl6eq 2872 . . . 4 ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = ∅)
8 eqneqall 3027 . . . 4 (((𝑋𝑂𝑌)‘𝑍) = ∅ → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
94, 7, 83syl 18 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
102, 9pm2.61i 184 . 2 (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))
111, 10syl 17 1 (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  c0 4291  cmpt 5146  cfv 6355  (class class class)co 7156  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-dm 5565  df-iota 6314  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161
This theorem is referenced by:  elovmpt3rab1  7405  elovmptnn0wrd  13911
  Copyright terms: Public domain W3C validator