MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw Structured version   Visualization version   GIF version

Theorem f1opw 7168
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵)
2 dff1o3 6399 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
3 vex 3401 . . . 4 𝑎 ∈ V
43funimaex 6223 . . 3 (Fun 𝐹 → (𝐹𝑎) ∈ V)
52, 4simplbiim 500 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ∈ V)
6 f1ofun 6395 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
7 vex 3401 . . . 4 𝑏 ∈ V
87funimaex 6223 . . 3 (Fun 𝐹 → (𝐹𝑏) ∈ V)
96, 8syl 17 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ∈ V)
101, 5, 9f1opw2 7167 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3398  𝒫 cpw 4379  cmpt 4967  ccnv 5356  cima 5360  Fun wfun 6131  ontowfo 6135  1-1-ontowf1o 6136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144
This theorem is referenced by:  ackbij2lem2  9399
  Copyright terms: Public domain W3C validator