MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw Structured version   Visualization version   GIF version

Theorem f1opw 7681
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵)
2 dff1o3 6848 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
3 vex 3475 . . . 4 𝑎 ∈ V
43funimaex 6644 . . 3 (Fun 𝐹 → (𝐹𝑎) ∈ V)
52, 4simplbiim 503 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ∈ V)
6 f1ofun 6844 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
7 vex 3475 . . . 4 𝑏 ∈ V
87funimaex 6644 . . 3 (Fun 𝐹 → (𝐹𝑏) ∈ V)
96, 8syl 17 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ∈ V)
101, 5, 9f1opw2 7680 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3471  𝒫 cpw 4604  cmpt 5233  ccnv 5679  cima 5683  Fun wfun 6545  ontowfo 6549  1-1-ontowf1o 6550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558
This theorem is referenced by:  ackbij2lem2  10269
  Copyright terms: Public domain W3C validator