MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1opw Structured version   Visualization version   GIF version

Theorem f1opw 7525
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵)
2 dff1o3 6722 . . 3 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
3 vex 3436 . . . 4 𝑎 ∈ V
43funimaex 6521 . . 3 (Fun 𝐹 → (𝐹𝑎) ∈ V)
52, 4simplbiim 505 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ∈ V)
6 f1ofun 6718 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
7 vex 3436 . . . 4 𝑏 ∈ V
87funimaex 6521 . . 3 (Fun 𝐹 → (𝐹𝑏) ∈ V)
96, 8syl 17 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ∈ V)
101, 5, 9f1opw2 7524 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  𝒫 cpw 4533  cmpt 5157  ccnv 5588  cima 5592  Fun wfun 6427  ontowfo 6431  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  ackbij2lem2  9996
  Copyright terms: Public domain W3C validator