Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1opw | Structured version Visualization version GIF version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | dff1o3 6720 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
3 | vex 3435 | . . . 4 ⊢ 𝑎 ∈ V | |
4 | 3 | funimaex 6519 | . . 3 ⊢ (Fun ◡𝐹 → (◡𝐹 “ 𝑎) ∈ V) |
5 | 2, 4 | simplbiim 505 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 “ 𝑎) ∈ V) |
6 | f1ofun 6716 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
7 | vex 3435 | . . . 4 ⊢ 𝑏 ∈ V | |
8 | 7 | funimaex 6519 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ 𝑏) ∈ V) |
9 | 6, 8 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 “ 𝑏) ∈ V) |
10 | 1, 5, 9 | f1opw2 7518 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 𝒫 cpw 4539 ↦ cmpt 5162 ◡ccnv 5589 “ cima 5593 Fun wfun 6426 –onto→wfo 6430 –1-1-onto→wf1o 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 |
This theorem is referenced by: ackbij2lem2 9997 |
Copyright terms: Public domain | W3C validator |