| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1opw | Structured version Visualization version GIF version | ||
| Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| f1opw | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 2 | dff1o3 6775 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
| 3 | vex 3440 | . . . 4 ⊢ 𝑎 ∈ V | |
| 4 | 3 | funimaex 6575 | . . 3 ⊢ (Fun ◡𝐹 → (◡𝐹 “ 𝑎) ∈ V) |
| 5 | 2, 4 | simplbiim 504 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 “ 𝑎) ∈ V) |
| 6 | f1ofun 6771 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 7 | vex 3440 | . . . 4 ⊢ 𝑏 ∈ V | |
| 8 | 7 | funimaex 6575 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ 𝑏) ∈ V) |
| 9 | 6, 8 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 “ 𝑏) ∈ V) |
| 10 | 1, 5, 9 | f1opw2 7607 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4549 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 Fun wfun 6481 –onto→wfo 6485 –1-1-onto→wf1o 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 |
| This theorem is referenced by: ackbij2lem2 10136 |
| Copyright terms: Public domain | W3C validator |