MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmptnn0wrd Structured version   Visualization version   GIF version

Theorem elovmptnn0wrd 14514
Description: Implications for the value of an operation defined by the maps-to notation with a function of nonnegative integers into a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦 and 𝑛. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmptnn0wrd.o 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑧 ∈ Word 𝑣𝜑}))
Assertion
Ref Expression
elovmptnn0wrd (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉)))
Distinct variable groups:   𝑛,𝑉,𝑣,𝑦,𝑧   𝑛,𝑁,𝑧   𝑛,𝑌,𝑣,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑛)   𝑁(𝑦,𝑣)   𝑂(𝑦,𝑧,𝑣,𝑛)   𝑍(𝑦,𝑣,𝑛)

Proof of Theorem elovmptnn0wrd
StepHypRef Expression
1 elovmptnn0wrd.o . . . . 5 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑧 ∈ Word 𝑣𝜑}))
21elovmpt3imp 7667 . . . 4 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → (𝑉 ∈ V ∧ 𝑌 ∈ V))
3 wrdexg 14479 . . . . 5 (𝑉 ∈ V → Word 𝑉 ∈ V)
43adantr 480 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → Word 𝑉 ∈ V)
52, 4syl 17 . . 3 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → Word 𝑉 ∈ V)
6 nn0ex 12483 . . 3 0 ∈ V
75, 6jctil 519 . 2 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → (ℕ0 ∈ V ∧ Word 𝑉 ∈ V))
8 eqidd 2732 . . 3 ((𝑣 = 𝑉𝑦 = 𝑌) → ℕ0 = ℕ0)
9 wrdeq 14491 . . . 4 (𝑣 = 𝑉 → Word 𝑣 = Word 𝑉)
109adantr 480 . . 3 ((𝑣 = 𝑉𝑦 = 𝑌) → Word 𝑣 = Word 𝑉)
111, 8, 10elovmpt3rab1 7670 . 2 ((ℕ0 ∈ V ∧ Word 𝑉 ∈ V) → (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉))))
127, 11mpcom 38 1 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  cmpt 5231  cfv 6543  (class class class)co 7412  cmpo 7414  0cn0 12477  Word cword 14469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator