MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmptnn0wrd Structured version   Visualization version   GIF version

Theorem elovmptnn0wrd 14114
Description: Implications for the value of an operation defined by the maps-to notation with a function of nonnegative integers into a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦 and 𝑛. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmptnn0wrd.o 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑧 ∈ Word 𝑣𝜑}))
Assertion
Ref Expression
elovmptnn0wrd (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉)))
Distinct variable groups:   𝑛,𝑉,𝑣,𝑦,𝑧   𝑛,𝑁,𝑧   𝑛,𝑌,𝑣,𝑦,𝑧   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑛)   𝑁(𝑦,𝑣)   𝑂(𝑦,𝑧,𝑣,𝑛)   𝑍(𝑦,𝑣,𝑛)

Proof of Theorem elovmptnn0wrd
StepHypRef Expression
1 elovmptnn0wrd.o . . . . 5 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑧 ∈ Word 𝑣𝜑}))
21elovmpt3imp 7462 . . . 4 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → (𝑉 ∈ V ∧ 𝑌 ∈ V))
3 wrdexg 14079 . . . . 5 (𝑉 ∈ V → Word 𝑉 ∈ V)
43adantr 484 . . . 4 ((𝑉 ∈ V ∧ 𝑌 ∈ V) → Word 𝑉 ∈ V)
52, 4syl 17 . . 3 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → Word 𝑉 ∈ V)
6 nn0ex 12096 . . 3 0 ∈ V
75, 6jctil 523 . 2 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → (ℕ0 ∈ V ∧ Word 𝑉 ∈ V))
8 eqidd 2738 . . 3 ((𝑣 = 𝑉𝑦 = 𝑌) → ℕ0 = ℕ0)
9 wrdeq 14091 . . . 4 (𝑣 = 𝑉 → Word 𝑣 = Word 𝑉)
109adantr 484 . . 3 ((𝑣 = 𝑉𝑦 = 𝑌) → Word 𝑣 = Word 𝑉)
111, 8, 10elovmpt3rab1 7465 . 2 ((ℕ0 ∈ V ∧ Word 𝑉 ∈ V) → (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉))))
127, 11mpcom 38 1 (𝑍 ∈ ((𝑉𝑂𝑌)‘𝑁) → ((𝑉 ∈ V ∧ 𝑌 ∈ V) ∧ (𝑁 ∈ ℕ0𝑍 ∈ Word 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  cmpt 5135  cfv 6380  (class class class)co 7213  cmpo 7215  0cn0 12090  Word cword 14069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator