Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ovmpt3rab1 | Structured version Visualization version GIF version |
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.) |
Ref | Expression |
---|---|
ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
ovmpt3rab1.p | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
ovmpt3rab1.x | ⊢ Ⅎ𝑥𝜓 |
ovmpt3rab1.y | ⊢ Ⅎ𝑦𝜓 |
Ref | Expression |
---|---|
ovmpt3rab1 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt3rab1.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}))) |
3 | ovmpt3rab1.m | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
4 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
5 | ovmpt3rab1.p | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | rabeqbidv 3420 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑎 ∈ 𝑁 ∣ 𝜑} = {𝑎 ∈ 𝐿 ∣ 𝜓}) |
7 | 3, 6 | mpteq12dv 5180 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
8 | 7 | adantl 482 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
9 | eqidd 2737 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝑥 = 𝑋) → V = V) | |
10 | elex 3459 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
11 | 10 | 3ad2ant1 1132 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑋 ∈ V) |
12 | elex 3459 | . . 3 ⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ V) | |
13 | 12 | 3ad2ant2 1133 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑌 ∈ V) |
14 | mptexg 7147 | . . 3 ⊢ (𝐾 ∈ 𝑈 → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) | |
15 | 14 | 3ad2ant3 1134 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) |
16 | nfv 1916 | . 2 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
17 | nfv 1916 | . 2 ⊢ Ⅎ𝑦(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
18 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝑋 | |
19 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝑌 | |
20 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥𝐾 | |
21 | ovmpt3rab1.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
22 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐿 | |
23 | 21, 22 | nfrabw 3436 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐿 ∣ 𝜓} |
24 | 20, 23 | nfmpt 5196 | . 2 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
25 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑦𝐾 | |
26 | ovmpt3rab1.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
27 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦𝐿 | |
28 | 26, 27 | nfrabw 3436 | . . 3 ⊢ Ⅎ𝑦{𝑎 ∈ 𝐿 ∣ 𝜓} |
29 | 25, 28 | nfmpt 5196 | . 2 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
30 | 2, 8, 9, 11, 13, 15, 16, 17, 18, 19, 24, 29 | ovmpodxf 7477 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 {crab 3403 Vcvv 3441 ↦ cmpt 5172 (class class class)co 7329 ∈ cmpo 7331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 |
This theorem is referenced by: ovmpt3rabdm 7582 elovmpt3rab1 7583 |
Copyright terms: Public domain | W3C validator |