| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpt3rab1 | Structured version Visualization version GIF version | ||
| Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.) |
| Ref | Expression |
|---|---|
| ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
| ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
| ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
| ovmpt3rab1.p | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
| ovmpt3rab1.x | ⊢ Ⅎ𝑥𝜓 |
| ovmpt3rab1.y | ⊢ Ⅎ𝑦𝜓 |
| Ref | Expression |
|---|---|
| ovmpt3rab1 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt3rab1.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}))) |
| 3 | ovmpt3rab1.m | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
| 4 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
| 5 | ovmpt3rab1.p | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | rabeqbidv 3454 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑎 ∈ 𝑁 ∣ 𝜑} = {𝑎 ∈ 𝐿 ∣ 𝜓}) |
| 7 | 3, 6 | mpteq12dv 5232 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
| 8 | 7 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
| 9 | eqidd 2737 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝑥 = 𝑋) → V = V) | |
| 10 | elex 3500 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑋 ∈ V) |
| 12 | elex 3500 | . . 3 ⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ V) | |
| 13 | 12 | 3ad2ant2 1134 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑌 ∈ V) |
| 14 | mptexg 7242 | . . 3 ⊢ (𝐾 ∈ 𝑈 → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) | |
| 15 | 14 | 3ad2ant3 1135 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) |
| 16 | nfv 1913 | . 2 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
| 17 | nfv 1913 | . 2 ⊢ Ⅎ𝑦(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
| 18 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝑋 | |
| 19 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝑌 | |
| 20 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥𝐾 | |
| 21 | ovmpt3rab1.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 22 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐿 | |
| 23 | 21, 22 | nfrabw 3474 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐿 ∣ 𝜓} |
| 24 | 20, 23 | nfmpt 5248 | . 2 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
| 25 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑦𝐾 | |
| 26 | ovmpt3rab1.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 27 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦𝐿 | |
| 28 | 26, 27 | nfrabw 3474 | . . 3 ⊢ Ⅎ𝑦{𝑎 ∈ 𝐿 ∣ 𝜓} |
| 29 | 25, 28 | nfmpt 5248 | . 2 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
| 30 | 2, 8, 9, 11, 13, 15, 16, 17, 18, 19, 24, 29 | ovmpodxf 7584 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 {crab 3435 Vcvv 3479 ↦ cmpt 5224 (class class class)co 7432 ∈ cmpo 7434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 |
| This theorem is referenced by: ovmpt3rabdm 7693 elovmpt3rab1 7694 |
| Copyright terms: Public domain | W3C validator |