MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt3rab1 Structured version   Visualization version   GIF version

Theorem ovmpt3rab1 7647
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.)
Hypotheses
Ref Expression
ovmpt3rab1.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
ovmpt3rab1.m ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
ovmpt3rab1.n ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
ovmpt3rab1.p ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
ovmpt3rab1.x 𝑥𝜓
ovmpt3rab1.y 𝑦𝜓
Assertion
Ref Expression
ovmpt3rab1 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝐿,𝑎,𝑥,𝑦   𝑁,𝑎   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑈,𝑦   𝑋,𝑎,𝑥,𝑦,𝑧   𝑌,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝜓(𝑥,𝑦,𝑧,𝑎)   𝑈(𝑧,𝑎)   𝐾(𝑎)   𝐿(𝑧)   𝑀(𝑥,𝑦,𝑧,𝑎)   𝑁(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧,𝑎)   𝑉(𝑧,𝑎)   𝑊(𝑧,𝑎)

Proof of Theorem ovmpt3rab1
StepHypRef Expression
1 ovmpt3rab1.o . . 3 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
21a1i 11 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑})))
3 ovmpt3rab1.m . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
4 ovmpt3rab1.n . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
5 ovmpt3rab1.p . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
64, 5rabeqbidv 3424 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑎𝑁𝜑} = {𝑎𝐿𝜓})
73, 6mpteq12dv 5194 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧𝑀 ↦ {𝑎𝑁𝜑}) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
87adantl 481 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧𝑀 ↦ {𝑎𝑁𝜑}) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
9 eqidd 2730 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝑥 = 𝑋) → V = V)
10 elex 3468 . . 3 (𝑋𝑉𝑋 ∈ V)
11103ad2ant1 1133 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → 𝑋 ∈ V)
12 elex 3468 . . 3 (𝑌𝑊𝑌 ∈ V)
13123ad2ant2 1134 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → 𝑌 ∈ V)
14 mptexg 7195 . . 3 (𝐾𝑈 → (𝑧𝐾 ↦ {𝑎𝐿𝜓}) ∈ V)
15143ad2ant3 1135 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑧𝐾 ↦ {𝑎𝐿𝜓}) ∈ V)
16 nfv 1914 . 2 𝑥(𝑋𝑉𝑌𝑊𝐾𝑈)
17 nfv 1914 . 2 𝑦(𝑋𝑉𝑌𝑊𝐾𝑈)
18 nfcv 2891 . 2 𝑦𝑋
19 nfcv 2891 . 2 𝑥𝑌
20 nfcv 2891 . . 3 𝑥𝐾
21 ovmpt3rab1.x . . . 4 𝑥𝜓
22 nfcv 2891 . . . 4 𝑥𝐿
2321, 22nfrabw 3443 . . 3 𝑥{𝑎𝐿𝜓}
2420, 23nfmpt 5205 . 2 𝑥(𝑧𝐾 ↦ {𝑎𝐿𝜓})
25 nfcv 2891 . . 3 𝑦𝐾
26 ovmpt3rab1.y . . . 4 𝑦𝜓
27 nfcv 2891 . . . 4 𝑦𝐿
2826, 27nfrabw 3443 . . 3 𝑦{𝑎𝐿𝜓}
2925, 28nfmpt 5205 . 2 𝑦(𝑧𝐾 ↦ {𝑎𝐿𝜓})
302, 8, 9, 11, 13, 15, 16, 17, 18, 19, 24, 29ovmpodxf 7539 1 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  {crab 3405  Vcvv 3447  cmpt 5188  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  ovmpt3rabdm  7648  elovmpt3rab1  7649
  Copyright terms: Public domain W3C validator