![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpt3rab1 | Structured version Visualization version GIF version |
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.) |
Ref | Expression |
---|---|
ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
ovmpt3rab1.p | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
ovmpt3rab1.x | ⊢ Ⅎ𝑥𝜓 |
ovmpt3rab1.y | ⊢ Ⅎ𝑦𝜓 |
Ref | Expression |
---|---|
ovmpt3rab1 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt3rab1.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}))) |
3 | ovmpt3rab1.m | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
4 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
5 | ovmpt3rab1.p | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | rabeqbidv 3437 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑎 ∈ 𝑁 ∣ 𝜑} = {𝑎 ∈ 𝐿 ∣ 𝜓}) |
7 | 3, 6 | mpteq12dv 5234 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
8 | 7 | adantl 480 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
9 | eqidd 2726 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝑥 = 𝑋) → V = V) | |
10 | elex 3482 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
11 | 10 | 3ad2ant1 1130 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑋 ∈ V) |
12 | elex 3482 | . . 3 ⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ V) | |
13 | 12 | 3ad2ant2 1131 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑌 ∈ V) |
14 | mptexg 7228 | . . 3 ⊢ (𝐾 ∈ 𝑈 → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) | |
15 | 14 | 3ad2ant3 1132 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) |
16 | nfv 1909 | . 2 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
17 | nfv 1909 | . 2 ⊢ Ⅎ𝑦(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
18 | nfcv 2892 | . 2 ⊢ Ⅎ𝑦𝑋 | |
19 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝑌 | |
20 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥𝐾 | |
21 | ovmpt3rab1.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
22 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐿 | |
23 | 21, 22 | nfrabw 3457 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐿 ∣ 𝜓} |
24 | 20, 23 | nfmpt 5250 | . 2 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
25 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑦𝐾 | |
26 | ovmpt3rab1.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
27 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑦𝐿 | |
28 | 26, 27 | nfrabw 3457 | . . 3 ⊢ Ⅎ𝑦{𝑎 ∈ 𝐿 ∣ 𝜓} |
29 | 25, 28 | nfmpt 5250 | . 2 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
30 | 2, 8, 9, 11, 13, 15, 16, 17, 18, 19, 24, 29 | ovmpodxf 7567 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 {crab 3419 Vcvv 3463 ↦ cmpt 5226 (class class class)co 7415 ∈ cmpo 7417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 |
This theorem is referenced by: ovmpt3rabdm 7676 elovmpt3rab1 7677 |
Copyright terms: Public domain | W3C validator |