MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt3rab1 Structured version   Visualization version   GIF version

Theorem ovmpt3rab1 7581
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.)
Hypotheses
Ref Expression
ovmpt3rab1.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
ovmpt3rab1.m ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
ovmpt3rab1.n ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
ovmpt3rab1.p ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
ovmpt3rab1.x 𝑥𝜓
ovmpt3rab1.y 𝑦𝜓
Assertion
Ref Expression
ovmpt3rab1 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
Distinct variable groups:   𝑥,𝐾,𝑦,𝑧   𝐿,𝑎,𝑥,𝑦   𝑁,𝑎   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑈,𝑦   𝑋,𝑎,𝑥,𝑦,𝑧   𝑌,𝑎,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑎)   𝜓(𝑥,𝑦,𝑧,𝑎)   𝑈(𝑧,𝑎)   𝐾(𝑎)   𝐿(𝑧)   𝑀(𝑥,𝑦,𝑧,𝑎)   𝑁(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧,𝑎)   𝑉(𝑧,𝑎)   𝑊(𝑧,𝑎)

Proof of Theorem ovmpt3rab1
StepHypRef Expression
1 ovmpt3rab1.o . . 3 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑}))
21a1i 11 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀 ↦ {𝑎𝑁𝜑})))
3 ovmpt3rab1.m . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑀 = 𝐾)
4 ovmpt3rab1.n . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑁 = 𝐿)
5 ovmpt3rab1.p . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
64, 5rabeqbidv 3420 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑎𝑁𝜑} = {𝑎𝐿𝜓})
73, 6mpteq12dv 5180 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧𝑀 ↦ {𝑎𝑁𝜑}) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
87adantl 482 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧𝑀 ↦ {𝑎𝑁𝜑}) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
9 eqidd 2737 . 2 (((𝑋𝑉𝑌𝑊𝐾𝑈) ∧ 𝑥 = 𝑋) → V = V)
10 elex 3459 . . 3 (𝑋𝑉𝑋 ∈ V)
11103ad2ant1 1132 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → 𝑋 ∈ V)
12 elex 3459 . . 3 (𝑌𝑊𝑌 ∈ V)
13123ad2ant2 1133 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → 𝑌 ∈ V)
14 mptexg 7147 . . 3 (𝐾𝑈 → (𝑧𝐾 ↦ {𝑎𝐿𝜓}) ∈ V)
15143ad2ant3 1134 . 2 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑧𝐾 ↦ {𝑎𝐿𝜓}) ∈ V)
16 nfv 1916 . 2 𝑥(𝑋𝑉𝑌𝑊𝐾𝑈)
17 nfv 1916 . 2 𝑦(𝑋𝑉𝑌𝑊𝐾𝑈)
18 nfcv 2904 . 2 𝑦𝑋
19 nfcv 2904 . 2 𝑥𝑌
20 nfcv 2904 . . 3 𝑥𝐾
21 ovmpt3rab1.x . . . 4 𝑥𝜓
22 nfcv 2904 . . . 4 𝑥𝐿
2321, 22nfrabw 3436 . . 3 𝑥{𝑎𝐿𝜓}
2420, 23nfmpt 5196 . 2 𝑥(𝑧𝐾 ↦ {𝑎𝐿𝜓})
25 nfcv 2904 . . 3 𝑦𝐾
26 ovmpt3rab1.y . . . 4 𝑦𝜓
27 nfcv 2904 . . . 4 𝑦𝐿
2826, 27nfrabw 3436 . . 3 𝑦{𝑎𝐿𝜓}
2925, 28nfmpt 5196 . 2 𝑦(𝑧𝐾 ↦ {𝑎𝐿𝜓})
302, 8, 9, 11, 13, 15, 16, 17, 18, 19, 24, 29ovmpodxf 7477 1 ((𝑋𝑉𝑌𝑊𝐾𝑈) → (𝑋𝑂𝑌) = (𝑧𝐾 ↦ {𝑎𝐿𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wnf 1784  wcel 2105  {crab 3403  Vcvv 3441  cmpt 5172  (class class class)co 7329  cmpo 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334
This theorem is referenced by:  ovmpt3rabdm  7582  elovmpt3rab1  7583
  Copyright terms: Public domain W3C validator