![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpt3rab1 | Structured version Visualization version GIF version |
Description: The value of an operation defined by the maps-to notation with a function into a class abstraction as a result. The domain of the function and the base set of the class abstraction may depend on the operands, using implicit substitution. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.) |
Ref | Expression |
---|---|
ovmpt3rab1.o | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) |
ovmpt3rab1.m | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) |
ovmpt3rab1.n | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) |
ovmpt3rab1.p | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
ovmpt3rab1.x | ⊢ Ⅎ𝑥𝜓 |
ovmpt3rab1.y | ⊢ Ⅎ𝑦𝜓 |
Ref | Expression |
---|---|
ovmpt3rab1 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt3rab1.o | . . 3 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑})) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}))) |
3 | ovmpt3rab1.m | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑀 = 𝐾) | |
4 | ovmpt3rab1.n | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑁 = 𝐿) | |
5 | ovmpt3rab1.p | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | rabeqbidv 3449 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑎 ∈ 𝑁 ∣ 𝜑} = {𝑎 ∈ 𝐿 ∣ 𝜓}) |
7 | 3, 6 | mpteq12dv 5238 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
8 | 7 | adantl 482 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 ∈ 𝑀 ↦ {𝑎 ∈ 𝑁 ∣ 𝜑}) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
9 | eqidd 2733 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) ∧ 𝑥 = 𝑋) → V = V) | |
10 | elex 3492 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑋 ∈ V) |
12 | elex 3492 | . . 3 ⊢ (𝑌 ∈ 𝑊 → 𝑌 ∈ V) | |
13 | 12 | 3ad2ant2 1134 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → 𝑌 ∈ V) |
14 | mptexg 7219 | . . 3 ⊢ (𝐾 ∈ 𝑈 → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) | |
15 | 14 | 3ad2ant3 1135 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) ∈ V) |
16 | nfv 1917 | . 2 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
17 | nfv 1917 | . 2 ⊢ Ⅎ𝑦(𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) | |
18 | nfcv 2903 | . 2 ⊢ Ⅎ𝑦𝑋 | |
19 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝑌 | |
20 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥𝐾 | |
21 | ovmpt3rab1.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
22 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝐿 | |
23 | 21, 22 | nfrabw 3468 | . . 3 ⊢ Ⅎ𝑥{𝑎 ∈ 𝐿 ∣ 𝜓} |
24 | 20, 23 | nfmpt 5254 | . 2 ⊢ Ⅎ𝑥(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
25 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦𝐾 | |
26 | ovmpt3rab1.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
27 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑦𝐿 | |
28 | 26, 27 | nfrabw 3468 | . . 3 ⊢ Ⅎ𝑦{𝑎 ∈ 𝐿 ∣ 𝜓} |
29 | 25, 28 | nfmpt 5254 | . 2 ⊢ Ⅎ𝑦(𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓}) |
30 | 2, 8, 9, 11, 13, 15, 16, 17, 18, 19, 24, 29 | ovmpodxf 7554 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝐾 ∈ 𝑈) → (𝑋𝑂𝑌) = (𝑧 ∈ 𝐾 ↦ {𝑎 ∈ 𝐿 ∣ 𝜓})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 {crab 3432 Vcvv 3474 ↦ cmpt 5230 (class class class)co 7405 ∈ cmpo 7407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 |
This theorem is referenced by: ovmpt3rabdm 7661 elovmpt3rab1 7662 |
Copyright terms: Public domain | W3C validator |