MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqnq Structured version   Visualization version   GIF version

Theorem addpqnq 10839
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addpqnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))

Proof of Theorem addpqnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plq 10815 . . . . 5 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
21fveq1i 6832 . . . 4 ( +Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩)
32a1i 11 . . 3 ((𝐴Q𝐵Q) → ( +Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩))
4 opelxpi 5658 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ (Q × Q))
54fvresd 6851 . . 3 ((𝐴Q𝐵Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩))
6 df-plpq 10809 . . . . 5 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
7 opex 5409 . . . . 5 ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ V
86, 7fnmpoi 8011 . . . 4 +pQ Fn ((N × N) × (N × N))
9 elpqn 10826 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
10 elpqn 10826 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
11 opelxpi 5658 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
129, 10, 11syl2an 596 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
13 fvco2 6928 . . . 4 (( +pQ Fn ((N × N) × (N × N)) ∧ ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
148, 12, 13sylancr 587 . . 3 ((𝐴Q𝐵Q) → (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
153, 5, 143eqtrd 2772 . 2 ((𝐴Q𝐵Q) → ( +Q ‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
16 df-ov 7358 . 2 (𝐴 +Q 𝐵) = ( +Q ‘⟨𝐴, 𝐵⟩)
17 df-ov 7358 . . 3 (𝐴 +pQ 𝐵) = ( +pQ ‘⟨𝐴, 𝐵⟩)
1817fveq2i 6834 . 2 ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩))
1915, 16, 183eqtr4g 2793 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cres 5623  ccom 5625   Fn wfn 6484  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  Ncnpi 10745   +N cpli 10746   ·N cmi 10747   +pQ cplpq 10749  Qcnq 10753  [Q]cerq 10755   +Q cplq 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-plpq 10809  df-nq 10813  df-plq 10815
This theorem is referenced by:  addclnq  10846  addcomnq  10852  adderpq  10857  addassnq  10859  distrnq  10862  ltanq  10872  1lt2nq  10874  prlem934  10934
  Copyright terms: Public domain W3C validator