| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addpqnq | Structured version Visualization version GIF version | ||
| Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-plq 10928 | . . . . 5 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
| 2 | 1 | fveq1i 6877 | . . . 4 ⊢ ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
| 4 | opelxpi 5691 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
| 5 | 4 | fvresd 6896 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉)) |
| 6 | df-plpq 10922 | . . . . 5 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
| 7 | opex 5439 | . . . . 5 ⊢ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
| 8 | 6, 7 | fnmpoi 8069 | . . . 4 ⊢ +pQ Fn ((N × N) × (N × N)) |
| 9 | elpqn 10939 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 10 | elpqn 10939 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 11 | opelxpi 5691 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
| 13 | fvco2 6976 | . . . 4 ⊢ (( +pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) | |
| 14 | 8, 12, 13 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
| 15 | 3, 5, 14 | 3eqtrd 2774 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
| 16 | df-ov 7408 | . 2 ⊢ (𝐴 +Q 𝐵) = ( +Q ‘〈𝐴, 𝐵〉) | |
| 17 | df-ov 7408 | . . 3 ⊢ (𝐴 +pQ 𝐵) = ( +pQ ‘〈𝐴, 𝐵〉) | |
| 18 | 17 | fveq2i 6879 | . 2 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉)) |
| 19 | 15, 16, 18 | 3eqtr4g 2795 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 Ncnpi 10858 +N cpli 10859 ·N cmi 10860 +pQ cplpq 10862 Qcnq 10866 [Q]cerq 10868 +Q cplq 10869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-plpq 10922 df-nq 10926 df-plq 10928 |
| This theorem is referenced by: addclnq 10959 addcomnq 10965 adderpq 10970 addassnq 10972 distrnq 10975 ltanq 10985 1lt2nq 10987 prlem934 11047 |
| Copyright terms: Public domain | W3C validator |