![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addpqnq | Structured version Visualization version GIF version |
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plq 10983 | . . . . 5 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
2 | 1 | fveq1i 6921 | . . . 4 ⊢ ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
4 | opelxpi 5737 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
5 | 4 | fvresd 6940 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉)) |
6 | df-plpq 10977 | . . . . 5 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
7 | opex 5484 | . . . . 5 ⊢ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
8 | 6, 7 | fnmpoi 8111 | . . . 4 ⊢ +pQ Fn ((N × N) × (N × N)) |
9 | elpqn 10994 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
10 | elpqn 10994 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
11 | opelxpi 5737 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
12 | 9, 10, 11 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
13 | fvco2 7019 | . . . 4 ⊢ (( +pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) | |
14 | 8, 12, 13 | sylancr 586 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
15 | 3, 5, 14 | 3eqtrd 2784 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
16 | df-ov 7451 | . 2 ⊢ (𝐴 +Q 𝐵) = ( +Q ‘〈𝐴, 𝐵〉) | |
17 | df-ov 7451 | . . 3 ⊢ (𝐴 +pQ 𝐵) = ( +pQ ‘〈𝐴, 𝐵〉) | |
18 | 17 | fveq2i 6923 | . 2 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉)) |
19 | 15, 16, 18 | 3eqtr4g 2805 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 Ncnpi 10913 +N cpli 10914 ·N cmi 10915 +pQ cplpq 10917 Qcnq 10921 [Q]cerq 10923 +Q cplq 10924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-plpq 10977 df-nq 10981 df-plq 10983 |
This theorem is referenced by: addclnq 11014 addcomnq 11020 adderpq 11025 addassnq 11027 distrnq 11030 ltanq 11040 1lt2nq 11042 prlem934 11102 |
Copyright terms: Public domain | W3C validator |