![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addpqnq | Structured version Visualization version GIF version |
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plq 10859 | . . . . 5 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
2 | 1 | fveq1i 6848 | . . . 4 ⊢ ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
4 | opelxpi 5675 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
5 | 4 | fvresd 6867 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉)) |
6 | df-plpq 10853 | . . . . 5 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
7 | opex 5426 | . . . . 5 ⊢ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
8 | 6, 7 | fnmpoi 8007 | . . . 4 ⊢ +pQ Fn ((N × N) × (N × N)) |
9 | elpqn 10870 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
10 | elpqn 10870 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
11 | opelxpi 5675 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
12 | 9, 10, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
13 | fvco2 6943 | . . . 4 ⊢ (( +pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) | |
14 | 8, 12, 13 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
15 | 3, 5, 14 | 3eqtrd 2775 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
16 | df-ov 7365 | . 2 ⊢ (𝐴 +Q 𝐵) = ( +Q ‘〈𝐴, 𝐵〉) | |
17 | df-ov 7365 | . . 3 ⊢ (𝐴 +pQ 𝐵) = ( +pQ ‘〈𝐴, 𝐵〉) | |
18 | 17 | fveq2i 6850 | . 2 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉)) |
19 | 15, 16, 18 | 3eqtr4g 2796 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 〈cop 4597 × cxp 5636 ↾ cres 5640 ∘ ccom 5642 Fn wfn 6496 ‘cfv 6501 (class class class)co 7362 1st c1st 7924 2nd c2nd 7925 Ncnpi 10789 +N cpli 10790 ·N cmi 10791 +pQ cplpq 10793 Qcnq 10797 [Q]cerq 10799 +Q cplq 10800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-1st 7926 df-2nd 7927 df-plpq 10853 df-nq 10857 df-plq 10859 |
This theorem is referenced by: addclnq 10890 addcomnq 10896 adderpq 10901 addassnq 10903 distrnq 10906 ltanq 10916 1lt2nq 10918 prlem934 10978 |
Copyright terms: Public domain | W3C validator |