![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addpqnq | Structured version Visualization version GIF version |
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addpqnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-plq 10058 | . . . . 5 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
2 | 1 | fveq1i 6438 | . . . 4 ⊢ ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉)) |
4 | opelxpi 5383 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ (Q × Q)) | |
5 | fvres 6456 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (Q × Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘〈𝐴, 𝐵〉) = (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉)) |
7 | df-plpq 10052 | . . . . 5 ⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | |
8 | opex 5155 | . . . . 5 ⊢ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉 ∈ V | |
9 | 7, 8 | fnmpt2i 7507 | . . . 4 ⊢ +pQ Fn ((N × N) × (N × N)) |
10 | elpqn 10069 | . . . . 5 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
11 | elpqn 10069 | . . . . 5 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
12 | opelxpi 5383 | . . . . 5 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) | |
13 | 10, 11, 12 | syl2an 589 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) |
14 | fvco2 6524 | . . . 4 ⊢ (( +pQ Fn ((N × N) × (N × N)) ∧ 〈𝐴, 𝐵〉 ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) | |
15 | 9, 13, 14 | sylancr 581 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (([Q] ∘ +pQ )‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
16 | 3, 6, 15 | 3eqtrd 2865 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ( +Q ‘〈𝐴, 𝐵〉) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉))) |
17 | df-ov 6913 | . 2 ⊢ (𝐴 +Q 𝐵) = ( +Q ‘〈𝐴, 𝐵〉) | |
18 | df-ov 6913 | . . 3 ⊢ (𝐴 +pQ 𝐵) = ( +pQ ‘〈𝐴, 𝐵〉) | |
19 | 18 | fveq2i 6440 | . 2 ⊢ ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘〈𝐴, 𝐵〉)) |
20 | 16, 17, 19 | 3eqtr4g 2886 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 〈cop 4405 × cxp 5344 ↾ cres 5348 ∘ ccom 5350 Fn wfn 6122 ‘cfv 6127 (class class class)co 6910 1st c1st 7431 2nd c2nd 7432 Ncnpi 9988 +N cpli 9989 ·N cmi 9990 +pQ cplpq 9992 Qcnq 9996 [Q]cerq 9998 +Q cplq 9999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-plpq 10052 df-nq 10056 df-plq 10058 |
This theorem is referenced by: addclnq 10089 addcomnq 10095 adderpq 10100 addassnq 10102 distrnq 10105 ltanq 10115 1lt2nq 10117 prlem934 10177 |
Copyright terms: Public domain | W3C validator |