MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addpqnq Structured version   Visualization version   GIF version

Theorem addpqnq 10694
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addpqnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))

Proof of Theorem addpqnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-plq 10670 . . . . 5 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
21fveq1i 6775 . . . 4 ( +Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩)
32a1i 11 . . 3 ((𝐴Q𝐵Q) → ( +Q ‘⟨𝐴, 𝐵⟩) = ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩))
4 opelxpi 5626 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ (Q × Q))
54fvresd 6794 . . 3 ((𝐴Q𝐵Q) → ((([Q] ∘ +pQ ) ↾ (Q × Q))‘⟨𝐴, 𝐵⟩) = (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩))
6 df-plpq 10664 . . . . 5 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
7 opex 5379 . . . . 5 ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩ ∈ V
86, 7fnmpoi 7910 . . . 4 +pQ Fn ((N × N) × (N × N))
9 elpqn 10681 . . . . 5 (𝐴Q𝐴 ∈ (N × N))
10 elpqn 10681 . . . . 5 (𝐵Q𝐵 ∈ (N × N))
11 opelxpi 5626 . . . . 5 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
129, 10, 11syl2an 596 . . . 4 ((𝐴Q𝐵Q) → ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N)))
13 fvco2 6865 . . . 4 (( +pQ Fn ((N × N) × (N × N)) ∧ ⟨𝐴, 𝐵⟩ ∈ ((N × N) × (N × N))) → (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
148, 12, 13sylancr 587 . . 3 ((𝐴Q𝐵Q) → (([Q] ∘ +pQ )‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
153, 5, 143eqtrd 2782 . 2 ((𝐴Q𝐵Q) → ( +Q ‘⟨𝐴, 𝐵⟩) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩)))
16 df-ov 7278 . 2 (𝐴 +Q 𝐵) = ( +Q ‘⟨𝐴, 𝐵⟩)
17 df-ov 7278 . . 3 (𝐴 +pQ 𝐵) = ( +pQ ‘⟨𝐴, 𝐵⟩)
1817fveq2i 6777 . 2 ([Q]‘(𝐴 +pQ 𝐵)) = ([Q]‘( +pQ ‘⟨𝐴, 𝐵⟩))
1915, 16, 183eqtr4g 2803 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567   × cxp 5587  cres 5591  ccom 5593   Fn wfn 6428  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  Ncnpi 10600   +N cpli 10601   ·N cmi 10602   +pQ cplpq 10604  Qcnq 10608  [Q]cerq 10610   +Q cplq 10611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-plpq 10664  df-nq 10668  df-plq 10670
This theorem is referenced by:  addclnq  10701  addcomnq  10707  adderpq  10712  addassnq  10714  distrnq  10717  ltanq  10727  1lt2nq  10729  prlem934  10789
  Copyright terms: Public domain W3C validator