| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulclnq | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulclnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpqnq 10839 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | |
| 2 | elpqn 10823 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 3 | elpqn 10823 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 4 | mulpqf 10844 | . . . . 5 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
| 5 | 4 | fovcl 7480 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N)) |
| 6 | 2, 3, 5 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·pQ 𝐵) ∈ (N × N)) |
| 7 | nqercl 10829 | . . 3 ⊢ ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) |
| 9 | 1, 8 | eqeltrd 2833 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 × cxp 5617 ‘cfv 6486 (class class class)co 7352 Ncnpi 10742 ·pQ cmpq 10747 Qcnq 10750 [Q]cerq 10752 ·Q cmq 10754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ni 10770 df-mi 10772 df-lti 10773 df-mpq 10807 df-enq 10809 df-nq 10810 df-erq 10811 df-mq 10813 df-1nq 10814 |
| This theorem is referenced by: ltrnq 10877 mpv 10909 dmmp 10911 mulclprlem 10917 mulclpr 10918 mulasspr 10922 distrlem1pr 10923 distrlem4pr 10924 distrlem5pr 10925 1idpr 10927 prlem934 10931 prlem936 10945 reclem3pr 10947 reclem4pr 10948 |
| Copyright terms: Public domain | W3C validator |