| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulclnq | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulclnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulpqnq 10854 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | |
| 2 | elpqn 10838 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 3 | elpqn 10838 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 4 | mulpqf 10859 | . . . . 5 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
| 5 | 4 | fovcl 7481 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N)) |
| 6 | 2, 3, 5 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·pQ 𝐵) ∈ (N × N)) |
| 7 | nqercl 10844 | . . 3 ⊢ ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) |
| 9 | 1, 8 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5621 ‘cfv 6486 (class class class)co 7353 Ncnpi 10757 ·pQ cmpq 10762 Qcnq 10765 [Q]cerq 10767 ·Q cmq 10769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-mi 10787 df-lti 10788 df-mpq 10822 df-enq 10824 df-nq 10825 df-erq 10826 df-mq 10828 df-1nq 10829 |
| This theorem is referenced by: ltrnq 10892 mpv 10924 dmmp 10926 mulclprlem 10932 mulclpr 10933 mulasspr 10937 distrlem1pr 10938 distrlem4pr 10939 distrlem5pr 10940 1idpr 10942 prlem934 10946 prlem936 10960 reclem3pr 10962 reclem4pr 10963 |
| Copyright terms: Public domain | W3C validator |