MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclnq Structured version   Visualization version   GIF version

Theorem mulclnq 10104
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulclnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)

Proof of Theorem mulclnq
StepHypRef Expression
1 mulpqnq 10098 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
2 elpqn 10082 . . . 4 (𝐴Q𝐴 ∈ (N × N))
3 elpqn 10082 . . . 4 (𝐵Q𝐵 ∈ (N × N))
4 mulpqf 10103 . . . . 5 ·pQ :((N × N) × (N × N))⟶(N × N)
54fovcl 7042 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
62, 3, 5syl2an 589 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·pQ 𝐵) ∈ (N × N))
7 nqercl 10088 . . 3 ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q)
86, 7syl 17 . 2 ((𝐴Q𝐵Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q)
91, 8eqeltrd 2859 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107   × cxp 5353  cfv 6135  (class class class)co 6922  Ncnpi 10001   ·pQ cmpq 10006  Qcnq 10009  [Q]cerq 10011   ·Q cmq 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-omul 7848  df-er 8026  df-ni 10029  df-mi 10031  df-lti 10032  df-mpq 10066  df-enq 10068  df-nq 10069  df-erq 10070  df-mq 10072  df-1nq 10073
This theorem is referenced by:  ltrnq  10136  mpv  10168  dmmp  10170  mulclprlem  10176  mulclpr  10177  mulasspr  10181  distrlem1pr  10182  distrlem4pr  10183  distrlem5pr  10184  1idpr  10186  prlem934  10190  prlem936  10204  reclem3pr  10206  reclem4pr  10207
  Copyright terms: Public domain W3C validator