Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulclnq | Structured version Visualization version GIF version |
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulclnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulpqnq 10697 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | |
2 | elpqn 10681 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
3 | elpqn 10681 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
4 | mulpqf 10702 | . . . . 5 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
5 | 4 | fovcl 7402 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N)) |
6 | 2, 3, 5 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·pQ 𝐵) ∈ (N × N)) |
7 | nqercl 10687 | . . 3 ⊢ ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) |
9 | 1, 8 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Ncnpi 10600 ·pQ cmpq 10605 Qcnq 10608 [Q]cerq 10610 ·Q cmq 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ni 10628 df-mi 10630 df-lti 10631 df-mpq 10665 df-enq 10667 df-nq 10668 df-erq 10669 df-mq 10671 df-1nq 10672 |
This theorem is referenced by: ltrnq 10735 mpv 10767 dmmp 10769 mulclprlem 10775 mulclpr 10776 mulasspr 10780 distrlem1pr 10781 distrlem4pr 10782 distrlem5pr 10783 1idpr 10785 prlem934 10789 prlem936 10803 reclem3pr 10805 reclem4pr 10806 |
Copyright terms: Public domain | W3C validator |