MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclnq Structured version   Visualization version   GIF version

Theorem mulclnq 10091
Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulclnq ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)

Proof of Theorem mulclnq
StepHypRef Expression
1 mulpqnq 10085 . 2 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
2 elpqn 10069 . . . 4 (𝐴Q𝐴 ∈ (N × N))
3 elpqn 10069 . . . 4 (𝐵Q𝐵 ∈ (N × N))
4 mulpqf 10090 . . . . 5 ·pQ :((N × N) × (N × N))⟶(N × N)
54fovcl 7030 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N))
62, 3, 5syl2an 589 . . 3 ((𝐴Q𝐵Q) → (𝐴 ·pQ 𝐵) ∈ (N × N))
7 nqercl 10075 . . 3 ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q)
86, 7syl 17 . 2 ((𝐴Q𝐵Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q)
91, 8eqeltrd 2906 1 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2164   × cxp 5344  cfv 6127  (class class class)co 6910  Ncnpi 9988   ·pQ cmpq 9993  Qcnq 9996  [Q]cerq 9998   ·Q cmq 10000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-omul 7836  df-er 8014  df-ni 10016  df-mi 10018  df-lti 10019  df-mpq 10053  df-enq 10055  df-nq 10056  df-erq 10057  df-mq 10059  df-1nq 10060
This theorem is referenced by:  ltrnq  10123  mpv  10155  dmmp  10157  mulclprlem  10163  mulclpr  10164  mulasspr  10168  distrlem1pr  10169  distrlem4pr  10170  distrlem5pr  10171  1idpr  10173  prlem934  10177  prlem936  10191  reclem3pr  10193  reclem4pr  10194
  Copyright terms: Public domain W3C validator