|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mulclnq | Structured version Visualization version GIF version | ||
| Description: Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| mulclnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulpqnq 10981 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | |
| 2 | elpqn 10965 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 3 | elpqn 10965 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 4 | mulpqf 10986 | . . . . 5 ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | |
| 5 | 4 | fovcl 7561 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N × N)) | 
| 6 | 2, 3, 5 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·pQ 𝐵) ∈ (N × N)) | 
| 7 | nqercl 10971 | . . 3 ⊢ ((𝐴 ·pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ([Q]‘(𝐴 ·pQ 𝐵)) ∈ Q) | 
| 9 | 1, 8 | eqeltrd 2841 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 × cxp 5683 ‘cfv 6561 (class class class)co 7431 Ncnpi 10884 ·pQ cmpq 10889 Qcnq 10892 [Q]cerq 10894 ·Q cmq 10896 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ni 10912 df-mi 10914 df-lti 10915 df-mpq 10949 df-enq 10951 df-nq 10952 df-erq 10953 df-mq 10955 df-1nq 10956 | 
| This theorem is referenced by: ltrnq 11019 mpv 11051 dmmp 11053 mulclprlem 11059 mulclpr 11060 mulasspr 11064 distrlem1pr 11065 distrlem4pr 11066 distrlem5pr 11067 1idpr 11069 prlem934 11073 prlem936 11087 reclem3pr 11089 reclem4pr 11090 | 
| Copyright terms: Public domain | W3C validator |