| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0nnq | ⊢ ¬ ∅ ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5648 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
| 2 | df-nq 10803 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 3 | 2 | ssrab3 4029 | . . 3 ⊢ Q ⊆ (N × N) |
| 4 | 3 | sseli 3925 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 class class class wbr 5089 × cxp 5612 ‘cfv 6481 2nd c2nd 7920 Ncnpi 10735 <N clti 10738 ~Q ceq 10742 Qcnq 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-opab 5152 df-xp 5620 df-nq 10803 |
| This theorem is referenced by: adderpq 10847 mulerpq 10848 addassnq 10849 mulassnq 10850 distrnq 10852 recmulnq 10855 recclnq 10857 ltanq 10862 ltmnq 10863 ltexnq 10866 nsmallnq 10868 ltbtwnnq 10869 ltrnq 10870 prlem934 10924 ltaddpr 10925 ltexprlem2 10928 ltexprlem3 10929 ltexprlem4 10930 ltexprlem6 10932 ltexprlem7 10933 prlem936 10938 reclem2pr 10939 |
| Copyright terms: Public domain | W3C validator |