| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0nnq | ⊢ ¬ ∅ ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5672 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
| 2 | df-nq 10865 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 3 | 2 | ssrab3 4045 | . . 3 ⊢ Q ⊆ (N × N) |
| 4 | 3 | sseli 3942 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 ∅c0 4296 class class class wbr 5107 × cxp 5636 ‘cfv 6511 2nd c2nd 7967 Ncnpi 10797 <N clti 10800 ~Q ceq 10804 Qcnq 10805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-nq 10865 |
| This theorem is referenced by: adderpq 10909 mulerpq 10910 addassnq 10911 mulassnq 10912 distrnq 10914 recmulnq 10917 recclnq 10919 ltanq 10924 ltmnq 10925 ltexnq 10928 nsmallnq 10930 ltbtwnnq 10931 ltrnq 10932 prlem934 10986 ltaddpr 10987 ltexprlem2 10990 ltexprlem3 10991 ltexprlem4 10992 ltexprlem6 10994 ltexprlem7 10995 prlem936 11000 reclem2pr 11001 |
| Copyright terms: Public domain | W3C validator |