Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version |
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nnq | ⊢ ¬ ∅ ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5623 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
2 | df-nq 10668 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
3 | 2 | ssrab3 4015 | . . 3 ⊢ Q ⊆ (N × N) |
4 | 3 | sseli 3917 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
5 | 1, 4 | mto 196 | 1 ⊢ ¬ ∅ ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∀wral 3064 ∅c0 4256 class class class wbr 5074 × cxp 5587 ‘cfv 6433 2nd c2nd 7830 Ncnpi 10600 <N clti 10603 ~Q ceq 10607 Qcnq 10608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-nq 10668 |
This theorem is referenced by: adderpq 10712 mulerpq 10713 addassnq 10714 mulassnq 10715 distrnq 10717 recmulnq 10720 recclnq 10722 ltanq 10727 ltmnq 10728 ltexnq 10731 nsmallnq 10733 ltbtwnnq 10734 ltrnq 10735 prlem934 10789 ltaddpr 10790 ltexprlem2 10793 ltexprlem3 10794 ltexprlem4 10795 ltexprlem6 10797 ltexprlem7 10798 prlem936 10803 reclem2pr 10804 |
Copyright terms: Public domain | W3C validator |