![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version |
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nnq | ⊢ ¬ ∅ ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5734 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
2 | df-nq 10981 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
3 | 2 | ssrab3 4105 | . . 3 ⊢ Q ⊆ (N × N) |
4 | 3 | sseli 4004 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3067 ∅c0 4352 class class class wbr 5166 × cxp 5698 ‘cfv 6573 2nd c2nd 8029 Ncnpi 10913 <N clti 10916 ~Q ceq 10920 Qcnq 10921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 df-nq 10981 |
This theorem is referenced by: adderpq 11025 mulerpq 11026 addassnq 11027 mulassnq 11028 distrnq 11030 recmulnq 11033 recclnq 11035 ltanq 11040 ltmnq 11041 ltexnq 11044 nsmallnq 11046 ltbtwnnq 11047 ltrnq 11048 prlem934 11102 ltaddpr 11103 ltexprlem2 11106 ltexprlem3 11107 ltexprlem4 11108 ltexprlem6 11110 ltexprlem7 11111 prlem936 11116 reclem2pr 11117 |
Copyright terms: Public domain | W3C validator |