| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0nnq | ⊢ ¬ ∅ ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5693 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
| 2 | df-nq 10931 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 3 | 2 | ssrab3 4062 | . . 3 ⊢ Q ⊆ (N × N) |
| 4 | 3 | sseli 3959 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3052 ∅c0 4313 class class class wbr 5124 × cxp 5657 ‘cfv 6536 2nd c2nd 7992 Ncnpi 10863 <N clti 10866 ~Q ceq 10870 Qcnq 10871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 df-nq 10931 |
| This theorem is referenced by: adderpq 10975 mulerpq 10976 addassnq 10977 mulassnq 10978 distrnq 10980 recmulnq 10983 recclnq 10985 ltanq 10990 ltmnq 10991 ltexnq 10994 nsmallnq 10996 ltbtwnnq 10997 ltrnq 10998 prlem934 11052 ltaddpr 11053 ltexprlem2 11056 ltexprlem3 11057 ltexprlem4 11058 ltexprlem6 11060 ltexprlem7 11061 prlem936 11066 reclem2pr 11067 |
| Copyright terms: Public domain | W3C validator |