| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0nnq | ⊢ ¬ ∅ ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5653 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
| 2 | df-nq 10806 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 3 | 2 | ssrab3 4033 | . . 3 ⊢ Q ⊆ (N × N) |
| 4 | 3 | sseli 3931 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 ∅c0 4284 class class class wbr 5092 × cxp 5617 ‘cfv 6482 2nd c2nd 7923 Ncnpi 10738 <N clti 10741 ~Q ceq 10745 Qcnq 10746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5155 df-xp 5625 df-nq 10806 |
| This theorem is referenced by: adderpq 10850 mulerpq 10851 addassnq 10852 mulassnq 10853 distrnq 10855 recmulnq 10858 recclnq 10860 ltanq 10865 ltmnq 10866 ltexnq 10869 nsmallnq 10871 ltbtwnnq 10872 ltrnq 10873 prlem934 10927 ltaddpr 10928 ltexprlem2 10931 ltexprlem3 10932 ltexprlem4 10933 ltexprlem6 10935 ltexprlem7 10936 prlem936 10941 reclem2pr 10942 |
| Copyright terms: Public domain | W3C validator |