![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version |
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nnq | ⊢ ¬ ∅ ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5723 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
2 | df-nq 10950 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
3 | 2 | ssrab3 4092 | . . 3 ⊢ Q ⊆ (N × N) |
4 | 3 | sseli 3991 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∀wral 3059 ∅c0 4339 class class class wbr 5148 × cxp 5687 ‘cfv 6563 2nd c2nd 8012 Ncnpi 10882 <N clti 10885 ~Q ceq 10889 Qcnq 10890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-opab 5211 df-xp 5695 df-nq 10950 |
This theorem is referenced by: adderpq 10994 mulerpq 10995 addassnq 10996 mulassnq 10997 distrnq 10999 recmulnq 11002 recclnq 11004 ltanq 11009 ltmnq 11010 ltexnq 11013 nsmallnq 11015 ltbtwnnq 11016 ltrnq 11017 prlem934 11071 ltaddpr 11072 ltexprlem2 11075 ltexprlem3 11076 ltexprlem4 11077 ltexprlem6 11079 ltexprlem7 11080 prlem936 11085 reclem2pr 11086 |
Copyright terms: Public domain | W3C validator |