Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version |
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0nnq | ⊢ ¬ ∅ ∈ Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 5614 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
2 | df-nq 10599 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
3 | 2 | ssrab3 4011 | . . 3 ⊢ Q ⊆ (N × N) |
4 | 3 | sseli 3913 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
5 | 1, 4 | mto 196 | 1 ⊢ ¬ ∅ ∈ Q |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3063 ∅c0 4253 class class class wbr 5070 × cxp 5578 ‘cfv 6418 2nd c2nd 7803 Ncnpi 10531 <N clti 10534 ~Q ceq 10538 Qcnq 10539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-nq 10599 |
This theorem is referenced by: adderpq 10643 mulerpq 10644 addassnq 10645 mulassnq 10646 distrnq 10648 recmulnq 10651 recclnq 10653 ltanq 10658 ltmnq 10659 ltexnq 10662 nsmallnq 10664 ltbtwnnq 10665 ltrnq 10666 prlem934 10720 ltaddpr 10721 ltexprlem2 10724 ltexprlem3 10725 ltexprlem4 10726 ltexprlem6 10728 ltexprlem7 10729 prlem936 10734 reclem2pr 10735 |
Copyright terms: Public domain | W3C validator |