| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nnq | Structured version Visualization version GIF version | ||
| Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0nnq | ⊢ ¬ ∅ ∈ Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5665 | . 2 ⊢ ¬ ∅ ∈ (N × N) | |
| 2 | df-nq 10841 | . . . 4 ⊢ Q = {𝑦 ∈ (N × N) ∣ ∀𝑥 ∈ (N × N)(𝑦 ~Q 𝑥 → ¬ (2nd ‘𝑥) <N (2nd ‘𝑦))} | |
| 3 | 2 | ssrab3 4041 | . . 3 ⊢ Q ⊆ (N × N) |
| 4 | 3 | sseli 3939 | . 2 ⊢ (∅ ∈ Q → ∅ ∈ (N × N)) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ Q |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 ∅c0 4292 class class class wbr 5102 × cxp 5629 ‘cfv 6499 2nd c2nd 7946 Ncnpi 10773 <N clti 10776 ~Q ceq 10780 Qcnq 10781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 df-nq 10841 |
| This theorem is referenced by: adderpq 10885 mulerpq 10886 addassnq 10887 mulassnq 10888 distrnq 10890 recmulnq 10893 recclnq 10895 ltanq 10900 ltmnq 10901 ltexnq 10904 nsmallnq 10906 ltbtwnnq 10907 ltrnq 10908 prlem934 10962 ltaddpr 10963 ltexprlem2 10966 ltexprlem3 10967 ltexprlem4 10968 ltexprlem6 10970 ltexprlem7 10971 prlem936 10976 reclem2pr 10977 |
| Copyright terms: Public domain | W3C validator |