| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulidnq | Structured version Visualization version GIF version | ||
| Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nq 10811 | . . 3 ⊢ 1Q ∈ Q | |
| 2 | mulpqnq 10824 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 1Q ∈ Q) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) |
| 4 | relxp 5632 | . . . . . . 7 ⊢ Rel (N × N) | |
| 5 | elpqn 10808 | . . . . . . 7 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 6 | 1st2nd 7966 | . . . . . . 7 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 8 | df-1nq 10799 | . . . . . . 7 ⊢ 1Q = 〈1o, 1o〉 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1Q = 〈1o, 1o〉) |
| 10 | 7, 9 | oveq12d 7359 | . . . . 5 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉)) |
| 11 | xp1st 7948 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
| 12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (1st ‘𝐴) ∈ N) |
| 13 | xp2nd 7949 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
| 14 | 5, 13 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (2nd ‘𝐴) ∈ N) |
| 15 | 1pi 10766 | . . . . . . 7 ⊢ 1o ∈ N | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1o ∈ N) |
| 17 | mulpipq 10823 | . . . . . 6 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) | |
| 18 | 12, 14, 16, 16, 17 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ Q → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) |
| 19 | mulidpi 10769 | . . . . . . . 8 ⊢ ((1st ‘𝐴) ∈ N → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) | |
| 20 | 11, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) |
| 21 | mulidpi 10769 | . . . . . . . 8 ⊢ ((2nd ‘𝐴) ∈ N → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) | |
| 22 | 13, 21 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) |
| 23 | 20, 22 | opeq12d 4831 | . . . . . 6 ⊢ (𝐴 ∈ (N × N) → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 24 | 5, 23 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Q → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 25 | 10, 18, 24 | 3eqtrd 2769 | . . . 4 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 26 | 25, 7 | eqtr4d 2768 | . . 3 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 𝐴) |
| 27 | 26 | fveq2d 6821 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴)) |
| 28 | nqerid 10816 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | |
| 29 | 3, 27, 28 | 3eqtrd 2769 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 〈cop 4580 × cxp 5612 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 1oc1o 8373 Ncnpi 10727 ·N cmi 10729 ·pQ cmpq 10732 Qcnq 10735 1Qc1q 10736 [Q]cerq 10737 ·Q cmq 10739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ni 10755 df-mi 10757 df-lti 10758 df-mpq 10792 df-enq 10794 df-nq 10795 df-erq 10796 df-mq 10798 df-1nq 10799 |
| This theorem is referenced by: recmulnq 10847 ltaddnq 10857 halfnq 10859 ltrnq 10862 addclprlem1 10899 addclprlem2 10900 mulclprlem 10902 1idpr 10912 prlem934 10916 prlem936 10930 reclem3pr 10932 |
| Copyright terms: Public domain | W3C validator |