![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulidnq | Structured version Visualization version GIF version |
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nq 10905 | . . 3 ⊢ 1Q ∈ Q | |
2 | mulpqnq 10918 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 1Q ∈ Q) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) | |
3 | 1, 2 | mpan2 689 | . 2 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) |
4 | relxp 5687 | . . . . . . 7 ⊢ Rel (N × N) | |
5 | elpqn 10902 | . . . . . . 7 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
6 | 1st2nd 8007 | . . . . . . 7 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
8 | df-1nq 10893 | . . . . . . 7 ⊢ 1Q = 〈1o, 1o〉 | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1Q = 〈1o, 1o〉) |
10 | 7, 9 | oveq12d 7411 | . . . . 5 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉)) |
11 | xp1st 7989 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (1st ‘𝐴) ∈ N) |
13 | xp2nd 7990 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
14 | 5, 13 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (2nd ‘𝐴) ∈ N) |
15 | 1pi 10860 | . . . . . . 7 ⊢ 1o ∈ N | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1o ∈ N) |
17 | mulpipq 10917 | . . . . . 6 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) | |
18 | 12, 14, 16, 16, 17 | syl22anc 837 | . . . . 5 ⊢ (𝐴 ∈ Q → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) |
19 | mulidpi 10863 | . . . . . . . 8 ⊢ ((1st ‘𝐴) ∈ N → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) | |
20 | 11, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) |
21 | mulidpi 10863 | . . . . . . . 8 ⊢ ((2nd ‘𝐴) ∈ N → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) | |
22 | 13, 21 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) |
23 | 20, 22 | opeq12d 4874 | . . . . . 6 ⊢ (𝐴 ∈ (N × N) → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
24 | 5, 23 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Q → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
25 | 10, 18, 24 | 3eqtrd 2775 | . . . 4 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
26 | 25, 7 | eqtr4d 2774 | . . 3 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 𝐴) |
27 | 26 | fveq2d 6882 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴)) |
28 | nqerid 10910 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | |
29 | 3, 27, 28 | 3eqtrd 2775 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 〈cop 4628 × cxp 5667 Rel wrel 5674 ‘cfv 6532 (class class class)co 7393 1st c1st 7955 2nd c2nd 7956 1oc1o 8441 Ncnpi 10821 ·N cmi 10823 ·pQ cmpq 10826 Qcnq 10829 1Qc1q 10830 [Q]cerq 10831 ·Q cmq 10833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-omul 8453 df-er 8686 df-ni 10849 df-mi 10851 df-lti 10852 df-mpq 10886 df-enq 10888 df-nq 10889 df-erq 10890 df-mq 10892 df-1nq 10893 |
This theorem is referenced by: recmulnq 10941 ltaddnq 10951 halfnq 10953 ltrnq 10956 addclprlem1 10993 addclprlem2 10994 mulclprlem 10996 1idpr 11006 prlem934 11010 prlem936 11024 reclem3pr 11026 |
Copyright terms: Public domain | W3C validator |