MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Visualization version   GIF version

Theorem mulidnq 10940
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 10905 . . 3 1QQ
2 mulpqnq 10918 . . 3 ((𝐴Q ∧ 1QQ) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
31, 2mpan2 689 . 2 (𝐴Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
4 relxp 5687 . . . . . . 7 Rel (N × N)
5 elpqn 10902 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
6 1st2nd 8007 . . . . . . 7 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
74, 5, 6sylancr 587 . . . . . 6 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
8 df-1nq 10893 . . . . . . 7 1Q = ⟨1o, 1o
98a1i 11 . . . . . 6 (𝐴Q → 1Q = ⟨1o, 1o⟩)
107, 9oveq12d 7411 . . . . 5 (𝐴Q → (𝐴 ·pQ 1Q) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩))
11 xp1st 7989 . . . . . . 7 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
125, 11syl 17 . . . . . 6 (𝐴Q → (1st𝐴) ∈ N)
13 xp2nd 7990 . . . . . . 7 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
145, 13syl 17 . . . . . 6 (𝐴Q → (2nd𝐴) ∈ N)
15 1pi 10860 . . . . . . 7 1oN
1615a1i 11 . . . . . 6 (𝐴Q → 1oN)
17 mulpipq 10917 . . . . . 6 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (1oN ∧ 1oN)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
1812, 14, 16, 16, 17syl22anc 837 . . . . 5 (𝐴Q → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
19 mulidpi 10863 . . . . . . . 8 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
2011, 19syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st𝐴) ·N 1o) = (1st𝐴))
21 mulidpi 10863 . . . . . . . 8 ((2nd𝐴) ∈ N → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2213, 21syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2320, 22opeq12d 4874 . . . . . 6 (𝐴 ∈ (N × N) → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
245, 23syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
2510, 18, 243eqtrd 2775 . . . 4 (𝐴Q → (𝐴 ·pQ 1Q) = ⟨(1st𝐴), (2nd𝐴)⟩)
2625, 7eqtr4d 2774 . . 3 (𝐴Q → (𝐴 ·pQ 1Q) = 𝐴)
2726fveq2d 6882 . 2 (𝐴Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴))
28 nqerid 10910 . 2 (𝐴Q → ([Q]‘𝐴) = 𝐴)
293, 27, 283eqtrd 2775 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cop 4628   × cxp 5667  Rel wrel 5674  cfv 6532  (class class class)co 7393  1st c1st 7955  2nd c2nd 7956  1oc1o 8441  Ncnpi 10821   ·N cmi 10823   ·pQ cmpq 10826  Qcnq 10829  1Qc1q 10830  [Q]cerq 10831   ·Q cmq 10833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-oadd 8452  df-omul 8453  df-er 8686  df-ni 10849  df-mi 10851  df-lti 10852  df-mpq 10886  df-enq 10888  df-nq 10889  df-erq 10890  df-mq 10892  df-1nq 10893
This theorem is referenced by:  recmulnq  10941  ltaddnq  10951  halfnq  10953  ltrnq  10956  addclprlem1  10993  addclprlem2  10994  mulclprlem  10996  1idpr  11006  prlem934  11010  prlem936  11024  reclem3pr  11026
  Copyright terms: Public domain W3C validator