MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Visualization version   GIF version

Theorem mulidnq 10542
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 10507 . . 3 1QQ
2 mulpqnq 10520 . . 3 ((𝐴Q ∧ 1QQ) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
31, 2mpan2 691 . 2 (𝐴Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
4 relxp 5554 . . . . . . 7 Rel (N × N)
5 elpqn 10504 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
6 1st2nd 7788 . . . . . . 7 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
74, 5, 6sylancr 590 . . . . . 6 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
8 df-1nq 10495 . . . . . . 7 1Q = ⟨1o, 1o
98a1i 11 . . . . . 6 (𝐴Q → 1Q = ⟨1o, 1o⟩)
107, 9oveq12d 7209 . . . . 5 (𝐴Q → (𝐴 ·pQ 1Q) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩))
11 xp1st 7771 . . . . . . 7 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
125, 11syl 17 . . . . . 6 (𝐴Q → (1st𝐴) ∈ N)
13 xp2nd 7772 . . . . . . 7 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
145, 13syl 17 . . . . . 6 (𝐴Q → (2nd𝐴) ∈ N)
15 1pi 10462 . . . . . . 7 1oN
1615a1i 11 . . . . . 6 (𝐴Q → 1oN)
17 mulpipq 10519 . . . . . 6 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (1oN ∧ 1oN)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
1812, 14, 16, 16, 17syl22anc 839 . . . . 5 (𝐴Q → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
19 mulidpi 10465 . . . . . . . 8 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
2011, 19syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st𝐴) ·N 1o) = (1st𝐴))
21 mulidpi 10465 . . . . . . . 8 ((2nd𝐴) ∈ N → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2213, 21syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2320, 22opeq12d 4778 . . . . . 6 (𝐴 ∈ (N × N) → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
245, 23syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
2510, 18, 243eqtrd 2775 . . . 4 (𝐴Q → (𝐴 ·pQ 1Q) = ⟨(1st𝐴), (2nd𝐴)⟩)
2625, 7eqtr4d 2774 . . 3 (𝐴Q → (𝐴 ·pQ 1Q) = 𝐴)
2726fveq2d 6699 . 2 (𝐴Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴))
28 nqerid 10512 . 2 (𝐴Q → ([Q]‘𝐴) = 𝐴)
293, 27, 283eqtrd 2775 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cop 4533   × cxp 5534  Rel wrel 5541  cfv 6358  (class class class)co 7191  1st c1st 7737  2nd c2nd 7738  1oc1o 8173  Ncnpi 10423   ·N cmi 10425   ·pQ cmpq 10428  Qcnq 10431  1Qc1q 10432  [Q]cerq 10433   ·Q cmq 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-omul 8185  df-er 8369  df-ni 10451  df-mi 10453  df-lti 10454  df-mpq 10488  df-enq 10490  df-nq 10491  df-erq 10492  df-mq 10494  df-1nq 10495
This theorem is referenced by:  recmulnq  10543  ltaddnq  10553  halfnq  10555  ltrnq  10558  addclprlem1  10595  addclprlem2  10596  mulclprlem  10598  1idpr  10608  prlem934  10612  prlem936  10626  reclem3pr  10628
  Copyright terms: Public domain W3C validator