| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulidnq | Structured version Visualization version GIF version | ||
| Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nq 10888 | . . 3 ⊢ 1Q ∈ Q | |
| 2 | mulpqnq 10901 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 1Q ∈ Q) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) |
| 4 | relxp 5659 | . . . . . . 7 ⊢ Rel (N × N) | |
| 5 | elpqn 10885 | . . . . . . 7 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 6 | 1st2nd 8021 | . . . . . . 7 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 8 | df-1nq 10876 | . . . . . . 7 ⊢ 1Q = 〈1o, 1o〉 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1Q = 〈1o, 1o〉) |
| 10 | 7, 9 | oveq12d 7408 | . . . . 5 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉)) |
| 11 | xp1st 8003 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
| 12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (1st ‘𝐴) ∈ N) |
| 13 | xp2nd 8004 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
| 14 | 5, 13 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (2nd ‘𝐴) ∈ N) |
| 15 | 1pi 10843 | . . . . . . 7 ⊢ 1o ∈ N | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1o ∈ N) |
| 17 | mulpipq 10900 | . . . . . 6 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) | |
| 18 | 12, 14, 16, 16, 17 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ Q → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) |
| 19 | mulidpi 10846 | . . . . . . . 8 ⊢ ((1st ‘𝐴) ∈ N → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) | |
| 20 | 11, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) |
| 21 | mulidpi 10846 | . . . . . . . 8 ⊢ ((2nd ‘𝐴) ∈ N → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) | |
| 22 | 13, 21 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) |
| 23 | 20, 22 | opeq12d 4848 | . . . . . 6 ⊢ (𝐴 ∈ (N × N) → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 24 | 5, 23 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Q → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 25 | 10, 18, 24 | 3eqtrd 2769 | . . . 4 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 26 | 25, 7 | eqtr4d 2768 | . . 3 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 𝐴) |
| 27 | 26 | fveq2d 6865 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴)) |
| 28 | nqerid 10893 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | |
| 29 | 3, 27, 28 | 3eqtrd 2769 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 1oc1o 8430 Ncnpi 10804 ·N cmi 10806 ·pQ cmpq 10809 Qcnq 10812 1Qc1q 10813 [Q]cerq 10814 ·Q cmq 10816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-mi 10834 df-lti 10835 df-mpq 10869 df-enq 10871 df-nq 10872 df-erq 10873 df-mq 10875 df-1nq 10876 |
| This theorem is referenced by: recmulnq 10924 ltaddnq 10934 halfnq 10936 ltrnq 10939 addclprlem1 10976 addclprlem2 10977 mulclprlem 10979 1idpr 10989 prlem934 10993 prlem936 11007 reclem3pr 11009 |
| Copyright terms: Public domain | W3C validator |