MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Visualization version   GIF version

Theorem mulidnq 10864
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 10829 . . 3 1QQ
2 mulpqnq 10842 . . 3 ((𝐴Q ∧ 1QQ) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
31, 2mpan2 691 . 2 (𝐴Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
4 relxp 5639 . . . . . . 7 Rel (N × N)
5 elpqn 10826 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
6 1st2nd 7980 . . . . . . 7 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
74, 5, 6sylancr 587 . . . . . 6 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
8 df-1nq 10817 . . . . . . 7 1Q = ⟨1o, 1o
98a1i 11 . . . . . 6 (𝐴Q → 1Q = ⟨1o, 1o⟩)
107, 9oveq12d 7373 . . . . 5 (𝐴Q → (𝐴 ·pQ 1Q) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩))
11 xp1st 7962 . . . . . . 7 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
125, 11syl 17 . . . . . 6 (𝐴Q → (1st𝐴) ∈ N)
13 xp2nd 7963 . . . . . . 7 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
145, 13syl 17 . . . . . 6 (𝐴Q → (2nd𝐴) ∈ N)
15 1pi 10784 . . . . . . 7 1oN
1615a1i 11 . . . . . 6 (𝐴Q → 1oN)
17 mulpipq 10841 . . . . . 6 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (1oN ∧ 1oN)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
1812, 14, 16, 16, 17syl22anc 838 . . . . 5 (𝐴Q → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
19 mulidpi 10787 . . . . . . . 8 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
2011, 19syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st𝐴) ·N 1o) = (1st𝐴))
21 mulidpi 10787 . . . . . . . 8 ((2nd𝐴) ∈ N → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2213, 21syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2320, 22opeq12d 4834 . . . . . 6 (𝐴 ∈ (N × N) → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
245, 23syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
2510, 18, 243eqtrd 2772 . . . 4 (𝐴Q → (𝐴 ·pQ 1Q) = ⟨(1st𝐴), (2nd𝐴)⟩)
2625, 7eqtr4d 2771 . . 3 (𝐴Q → (𝐴 ·pQ 1Q) = 𝐴)
2726fveq2d 6835 . 2 (𝐴Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴))
28 nqerid 10834 . 2 (𝐴Q → ([Q]‘𝐴) = 𝐴)
293, 27, 283eqtrd 2772 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  Rel wrel 5626  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  1oc1o 8387  Ncnpi 10745   ·N cmi 10747   ·pQ cmpq 10750  Qcnq 10753  1Qc1q 10754  [Q]cerq 10755   ·Q cmq 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399  df-er 8631  df-ni 10773  df-mi 10775  df-lti 10776  df-mpq 10810  df-enq 10812  df-nq 10813  df-erq 10814  df-mq 10816  df-1nq 10817
This theorem is referenced by:  recmulnq  10865  ltaddnq  10875  halfnq  10877  ltrnq  10880  addclprlem1  10917  addclprlem2  10918  mulclprlem  10920  1idpr  10930  prlem934  10934  prlem936  10948  reclem3pr  10950
  Copyright terms: Public domain W3C validator