| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulidnq | Structured version Visualization version GIF version | ||
| Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nq 10841 | . . 3 ⊢ 1Q ∈ Q | |
| 2 | mulpqnq 10854 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 1Q ∈ Q) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) |
| 4 | relxp 5641 | . . . . . . 7 ⊢ Rel (N × N) | |
| 5 | elpqn 10838 | . . . . . . 7 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 6 | 1st2nd 7981 | . . . . . . 7 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 8 | df-1nq 10829 | . . . . . . 7 ⊢ 1Q = 〈1o, 1o〉 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1Q = 〈1o, 1o〉) |
| 10 | 7, 9 | oveq12d 7371 | . . . . 5 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉)) |
| 11 | xp1st 7963 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
| 12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (1st ‘𝐴) ∈ N) |
| 13 | xp2nd 7964 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
| 14 | 5, 13 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (2nd ‘𝐴) ∈ N) |
| 15 | 1pi 10796 | . . . . . . 7 ⊢ 1o ∈ N | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1o ∈ N) |
| 17 | mulpipq 10853 | . . . . . 6 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) | |
| 18 | 12, 14, 16, 16, 17 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ Q → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) |
| 19 | mulidpi 10799 | . . . . . . . 8 ⊢ ((1st ‘𝐴) ∈ N → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) | |
| 20 | 11, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) |
| 21 | mulidpi 10799 | . . . . . . . 8 ⊢ ((2nd ‘𝐴) ∈ N → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) | |
| 22 | 13, 21 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) |
| 23 | 20, 22 | opeq12d 4835 | . . . . . 6 ⊢ (𝐴 ∈ (N × N) → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 24 | 5, 23 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Q → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 25 | 10, 18, 24 | 3eqtrd 2768 | . . . 4 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 26 | 25, 7 | eqtr4d 2767 | . . 3 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 𝐴) |
| 27 | 26 | fveq2d 6830 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴)) |
| 28 | nqerid 10846 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | |
| 29 | 3, 27, 28 | 3eqtrd 2768 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 × cxp 5621 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 1oc1o 8388 Ncnpi 10757 ·N cmi 10759 ·pQ cmpq 10762 Qcnq 10765 1Qc1q 10766 [Q]cerq 10767 ·Q cmq 10769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-mi 10787 df-lti 10788 df-mpq 10822 df-enq 10824 df-nq 10825 df-erq 10826 df-mq 10828 df-1nq 10829 |
| This theorem is referenced by: recmulnq 10877 ltaddnq 10887 halfnq 10889 ltrnq 10892 addclprlem1 10929 addclprlem2 10930 mulclprlem 10932 1idpr 10942 prlem934 10946 prlem936 10960 reclem3pr 10962 |
| Copyright terms: Public domain | W3C validator |