MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Visualization version   GIF version

Theorem mulidnq 10916
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 10881 . . 3 1QQ
2 mulpqnq 10894 . . 3 ((𝐴Q ∧ 1QQ) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
31, 2mpan2 691 . 2 (𝐴Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q)))
4 relxp 5656 . . . . . . 7 Rel (N × N)
5 elpqn 10878 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
6 1st2nd 8018 . . . . . . 7 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
74, 5, 6sylancr 587 . . . . . 6 (𝐴Q𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
8 df-1nq 10869 . . . . . . 7 1Q = ⟨1o, 1o
98a1i 11 . . . . . 6 (𝐴Q → 1Q = ⟨1o, 1o⟩)
107, 9oveq12d 7405 . . . . 5 (𝐴Q → (𝐴 ·pQ 1Q) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩))
11 xp1st 8000 . . . . . . 7 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
125, 11syl 17 . . . . . 6 (𝐴Q → (1st𝐴) ∈ N)
13 xp2nd 8001 . . . . . . 7 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
145, 13syl 17 . . . . . 6 (𝐴Q → (2nd𝐴) ∈ N)
15 1pi 10836 . . . . . . 7 1oN
1615a1i 11 . . . . . 6 (𝐴Q → 1oN)
17 mulpipq 10893 . . . . . 6 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (1oN ∧ 1oN)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
1812, 14, 16, 16, 17syl22anc 838 . . . . 5 (𝐴Q → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨1o, 1o⟩) = ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩)
19 mulidpi 10839 . . . . . . . 8 ((1st𝐴) ∈ N → ((1st𝐴) ·N 1o) = (1st𝐴))
2011, 19syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((1st𝐴) ·N 1o) = (1st𝐴))
21 mulidpi 10839 . . . . . . . 8 ((2nd𝐴) ∈ N → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2213, 21syl 17 . . . . . . 7 (𝐴 ∈ (N × N) → ((2nd𝐴) ·N 1o) = (2nd𝐴))
2320, 22opeq12d 4845 . . . . . 6 (𝐴 ∈ (N × N) → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
245, 23syl 17 . . . . 5 (𝐴Q → ⟨((1st𝐴) ·N 1o), ((2nd𝐴) ·N 1o)⟩ = ⟨(1st𝐴), (2nd𝐴)⟩)
2510, 18, 243eqtrd 2768 . . . 4 (𝐴Q → (𝐴 ·pQ 1Q) = ⟨(1st𝐴), (2nd𝐴)⟩)
2625, 7eqtr4d 2767 . . 3 (𝐴Q → (𝐴 ·pQ 1Q) = 𝐴)
2726fveq2d 6862 . 2 (𝐴Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴))
28 nqerid 10886 . 2 (𝐴Q → ([Q]‘𝐴) = 𝐴)
293, 27, 283eqtrd 2768 1 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   × cxp 5636  Rel wrel 5643  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  1oc1o 8427  Ncnpi 10797   ·N cmi 10799   ·pQ cmpq 10802  Qcnq 10805  1Qc1q 10806  [Q]cerq 10807   ·Q cmq 10809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-mi 10827  df-lti 10828  df-mpq 10862  df-enq 10864  df-nq 10865  df-erq 10866  df-mq 10868  df-1nq 10869
This theorem is referenced by:  recmulnq  10917  ltaddnq  10927  halfnq  10929  ltrnq  10932  addclprlem1  10969  addclprlem2  10970  mulclprlem  10972  1idpr  10982  prlem934  10986  prlem936  11000  reclem3pr  11002
  Copyright terms: Public domain W3C validator