| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulidnq | Structured version Visualization version GIF version | ||
| Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nq 10881 | . . 3 ⊢ 1Q ∈ Q | |
| 2 | mulpqnq 10894 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 1Q ∈ Q) → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = ([Q]‘(𝐴 ·pQ 1Q))) |
| 4 | relxp 5656 | . . . . . . 7 ⊢ Rel (N × N) | |
| 5 | elpqn 10878 | . . . . . . 7 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 6 | 1st2nd 8018 | . . . . . . 7 ⊢ ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ Q → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 8 | df-1nq 10869 | . . . . . . 7 ⊢ 1Q = 〈1o, 1o〉 | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1Q = 〈1o, 1o〉) |
| 10 | 7, 9 | oveq12d 7405 | . . . . 5 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉)) |
| 11 | xp1st 8000 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (1st ‘𝐴) ∈ N) | |
| 12 | 5, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (1st ‘𝐴) ∈ N) |
| 13 | xp2nd 8001 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → (2nd ‘𝐴) ∈ N) | |
| 14 | 5, 13 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ Q → (2nd ‘𝐴) ∈ N) |
| 15 | 1pi 10836 | . . . . . . 7 ⊢ 1o ∈ N | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ Q → 1o ∈ N) |
| 17 | mulpipq 10893 | . . . . . 6 ⊢ ((((1st ‘𝐴) ∈ N ∧ (2nd ‘𝐴) ∈ N) ∧ (1o ∈ N ∧ 1o ∈ N)) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) | |
| 18 | 12, 14, 16, 16, 17 | syl22anc 838 | . . . . 5 ⊢ (𝐴 ∈ Q → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ·pQ 〈1o, 1o〉) = 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉) |
| 19 | mulidpi 10839 | . . . . . . . 8 ⊢ ((1st ‘𝐴) ∈ N → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) | |
| 20 | 11, 19 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((1st ‘𝐴) ·N 1o) = (1st ‘𝐴)) |
| 21 | mulidpi 10839 | . . . . . . . 8 ⊢ ((2nd ‘𝐴) ∈ N → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) | |
| 22 | 13, 21 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ (N × N) → ((2nd ‘𝐴) ·N 1o) = (2nd ‘𝐴)) |
| 23 | 20, 22 | opeq12d 4845 | . . . . . 6 ⊢ (𝐴 ∈ (N × N) → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 24 | 5, 23 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ Q → 〈((1st ‘𝐴) ·N 1o), ((2nd ‘𝐴) ·N 1o)〉 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 25 | 10, 18, 24 | 3eqtrd 2768 | . . . 4 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
| 26 | 25, 7 | eqtr4d 2767 | . . 3 ⊢ (𝐴 ∈ Q → (𝐴 ·pQ 1Q) = 𝐴) |
| 27 | 26 | fveq2d 6862 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘(𝐴 ·pQ 1Q)) = ([Q]‘𝐴)) |
| 28 | nqerid 10886 | . 2 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | |
| 29 | 3, 27, 28 | 3eqtrd 2768 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 × cxp 5636 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 1oc1o 8427 Ncnpi 10797 ·N cmi 10799 ·pQ cmpq 10802 Qcnq 10805 1Qc1q 10806 [Q]cerq 10807 ·Q cmq 10809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ni 10825 df-mi 10827 df-lti 10828 df-mpq 10862 df-enq 10864 df-nq 10865 df-erq 10866 df-mq 10868 df-1nq 10869 |
| This theorem is referenced by: recmulnq 10917 ltaddnq 10927 halfnq 10929 ltrnq 10932 addclprlem1 10969 addclprlem2 10970 mulclprlem 10972 1idpr 10982 prlem934 10986 prlem936 11000 reclem3pr 11002 |
| Copyright terms: Public domain | W3C validator |