Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addnqf | Structured version Visualization version GIF version |
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addnqf | ⊢ +Q :(Q × Q)⟶Q |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 10617 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
2 | addpqf 10631 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
3 | fco 6608 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q |
5 | elpqn 10612 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
6 | 5 | ssriv 3921 | . . . 4 ⊢ Q ⊆ (N × N) |
7 | xpss12 5595 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
8 | 6, 6, 7 | mp2an 688 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
9 | fssres 6624 | . . 3 ⊢ ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
10 | 4, 8, 9 | mp2an 688 | . 2 ⊢ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
11 | df-plq 10601 | . . 3 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
12 | 11 | feq1i 6575 | . 2 ⊢ ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
13 | 10, 12 | mpbir 230 | 1 ⊢ +Q :(Q × Q)⟶Q |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 × cxp 5578 ↾ cres 5582 ∘ ccom 5584 ⟶wf 6414 Ncnpi 10531 +pQ cplpq 10535 Qcnq 10539 [Q]cerq 10541 +Q cplq 10542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-1nq 10603 |
This theorem is referenced by: addcomnq 10638 adderpq 10643 addassnq 10645 distrnq 10648 ltanq 10658 ltexnq 10662 nsmallnq 10664 ltbtwnnq 10665 prlem934 10720 ltaddpr 10721 ltexprlem2 10724 ltexprlem3 10725 ltexprlem4 10726 ltexprlem6 10728 ltexprlem7 10729 prlem936 10734 |
Copyright terms: Public domain | W3C validator |