| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addnqf | Structured version Visualization version GIF version | ||
| Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addnqf | ⊢ +Q :(Q × Q)⟶Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10818 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
| 2 | addpqf 10832 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
| 3 | fco 6675 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q |
| 5 | elpqn 10813 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 6 | 5 | ssriv 3938 | . . . 4 ⊢ Q ⊆ (N × N) |
| 7 | xpss12 5631 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
| 8 | 6, 6, 7 | mp2an 692 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
| 9 | fssres 6689 | . . 3 ⊢ ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
| 10 | 4, 8, 9 | mp2an 692 | . 2 ⊢ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
| 11 | df-plq 10802 | . . 3 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
| 12 | 11 | feq1i 6642 | . 2 ⊢ ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
| 13 | 10, 12 | mpbir 231 | 1 ⊢ +Q :(Q × Q)⟶Q |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 × cxp 5614 ↾ cres 5618 ∘ ccom 5620 ⟶wf 6477 Ncnpi 10732 +pQ cplpq 10736 Qcnq 10740 [Q]cerq 10742 +Q cplq 10743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10760 df-pli 10761 df-mi 10762 df-lti 10763 df-plpq 10796 df-enq 10799 df-nq 10800 df-erq 10801 df-plq 10802 df-1nq 10804 |
| This theorem is referenced by: addcomnq 10839 adderpq 10844 addassnq 10846 distrnq 10849 ltanq 10859 ltexnq 10863 nsmallnq 10865 ltbtwnnq 10866 prlem934 10921 ltaddpr 10922 ltexprlem2 10925 ltexprlem3 10926 ltexprlem4 10927 ltexprlem6 10929 ltexprlem7 10930 prlem936 10935 |
| Copyright terms: Public domain | W3C validator |