MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Structured version   Visualization version   GIF version

Theorem addnqf 10846
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf +Q :(Q × Q)⟶Q

Proof of Theorem addnqf
StepHypRef Expression
1 nqerf 10828 . . . 4 [Q]:(N × N)⟶Q
2 addpqf 10842 . . . 4 +pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6680 . . . 4 (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 692 . . 3 ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q
5 elpqn 10823 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3934 . . . 4 Q ⊆ (N × N)
7 xpss12 5634 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 692 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6694 . . 3 ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 692 . 2 (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-plq 10812 . . 3 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
1211feq1i 6647 . 2 ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 231 1 +Q :(Q × Q)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wss 3898   × cxp 5617  cres 5621  ccom 5623  wf 6482  Ncnpi 10742   +pQ cplpq 10746  Qcnq 10750  [Q]cerq 10752   +Q cplq 10753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ni 10770  df-pli 10771  df-mi 10772  df-lti 10773  df-plpq 10806  df-enq 10809  df-nq 10810  df-erq 10811  df-plq 10812  df-1nq 10814
This theorem is referenced by:  addcomnq  10849  adderpq  10854  addassnq  10856  distrnq  10859  ltanq  10869  ltexnq  10873  nsmallnq  10875  ltbtwnnq  10876  prlem934  10931  ltaddpr  10932  ltexprlem2  10935  ltexprlem3  10936  ltexprlem4  10937  ltexprlem6  10939  ltexprlem7  10940  prlem936  10945
  Copyright terms: Public domain W3C validator