| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addnqf | Structured version Visualization version GIF version | ||
| Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addnqf | ⊢ +Q :(Q × Q)⟶Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10949 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
| 2 | addpqf 10963 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
| 3 | fco 6735 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q |
| 5 | elpqn 10944 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 6 | 5 | ssriv 3967 | . . . 4 ⊢ Q ⊆ (N × N) |
| 7 | xpss12 5674 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
| 8 | 6, 6, 7 | mp2an 692 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
| 9 | fssres 6749 | . . 3 ⊢ ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
| 10 | 4, 8, 9 | mp2an 692 | . 2 ⊢ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
| 11 | df-plq 10933 | . . 3 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
| 12 | 11 | feq1i 6702 | . 2 ⊢ ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
| 13 | 10, 12 | mpbir 231 | 1 ⊢ +Q :(Q × Q)⟶Q |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 × cxp 5657 ↾ cres 5661 ∘ ccom 5663 ⟶wf 6532 Ncnpi 10863 +pQ cplpq 10867 Qcnq 10871 [Q]cerq 10873 +Q cplq 10874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-ni 10891 df-pli 10892 df-mi 10893 df-lti 10894 df-plpq 10927 df-enq 10930 df-nq 10931 df-erq 10932 df-plq 10933 df-1nq 10935 |
| This theorem is referenced by: addcomnq 10970 adderpq 10975 addassnq 10977 distrnq 10980 ltanq 10990 ltexnq 10994 nsmallnq 10996 ltbtwnnq 10997 prlem934 11052 ltaddpr 11053 ltexprlem2 11056 ltexprlem3 11057 ltexprlem4 11058 ltexprlem6 11060 ltexprlem7 11061 prlem936 11066 |
| Copyright terms: Public domain | W3C validator |