MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Structured version   Visualization version   GIF version

Theorem addnqf 10989
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf +Q :(Q × Q)⟶Q

Proof of Theorem addnqf
StepHypRef Expression
1 nqerf 10971 . . . 4 [Q]:(N × N)⟶Q
2 addpqf 10985 . . . 4 +pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6759 . . . 4 (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 692 . . 3 ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q
5 elpqn 10966 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3986 . . . 4 Q ⊆ (N × N)
7 xpss12 5699 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 692 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6773 . . 3 ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 692 . 2 (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-plq 10955 . . 3 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
1211feq1i 6726 . 2 ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 231 1 +Q :(Q × Q)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wss 3950   × cxp 5682  cres 5686  ccom 5688  wf 6556  Ncnpi 10885   +pQ cplpq 10889  Qcnq 10893  [Q]cerq 10895   +Q cplq 10896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-omul 8512  df-er 8746  df-ni 10913  df-pli 10914  df-mi 10915  df-lti 10916  df-plpq 10949  df-enq 10952  df-nq 10953  df-erq 10954  df-plq 10955  df-1nq 10957
This theorem is referenced by:  addcomnq  10992  adderpq  10997  addassnq  10999  distrnq  11002  ltanq  11012  ltexnq  11016  nsmallnq  11018  ltbtwnnq  11019  prlem934  11074  ltaddpr  11075  ltexprlem2  11078  ltexprlem3  11079  ltexprlem4  11080  ltexprlem6  11082  ltexprlem7  11083  prlem936  11088
  Copyright terms: Public domain W3C validator