MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Structured version   Visualization version   GIF version

Theorem addnqf 10967
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf +Q :(Q × Q)⟶Q

Proof of Theorem addnqf
StepHypRef Expression
1 nqerf 10949 . . . 4 [Q]:(N × N)⟶Q
2 addpqf 10963 . . . 4 +pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6735 . . . 4 (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 692 . . 3 ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q
5 elpqn 10944 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3967 . . . 4 Q ⊆ (N × N)
7 xpss12 5674 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 692 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6749 . . 3 ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 692 . 2 (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-plq 10933 . . 3 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
1211feq1i 6702 . 2 ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 231 1 +Q :(Q × Q)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wss 3931   × cxp 5657  cres 5661  ccom 5663  wf 6532  Ncnpi 10863   +pQ cplpq 10867  Qcnq 10871  [Q]cerq 10873   +Q cplq 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-1nq 10935
This theorem is referenced by:  addcomnq  10970  adderpq  10975  addassnq  10977  distrnq  10980  ltanq  10990  ltexnq  10994  nsmallnq  10996  ltbtwnnq  10997  prlem934  11052  ltaddpr  11053  ltexprlem2  11056  ltexprlem3  11057  ltexprlem4  11058  ltexprlem6  11060  ltexprlem7  11061  prlem936  11066
  Copyright terms: Public domain W3C validator