| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addnqf | Structured version Visualization version GIF version | ||
| Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addnqf | ⊢ +Q :(Q × Q)⟶Q |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10843 | . . . 4 ⊢ [Q]:(N × N)⟶Q | |
| 2 | addpqf 10857 | . . . 4 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
| 3 | fco 6680 | . . . 4 ⊢ (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q |
| 5 | elpqn 10838 | . . . . 5 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
| 6 | 5 | ssriv 3941 | . . . 4 ⊢ Q ⊆ (N × N) |
| 7 | xpss12 5638 | . . . 4 ⊢ ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N))) | |
| 8 | 6, 6, 7 | mp2an 692 | . . 3 ⊢ (Q × Q) ⊆ ((N × N) × (N × N)) |
| 9 | fssres 6694 | . . 3 ⊢ ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) | |
| 10 | 4, 8, 9 | mp2an 692 | . 2 ⊢ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q |
| 11 | df-plq 10827 | . . 3 ⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | |
| 12 | 11 | feq1i 6647 | . 2 ⊢ ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q) |
| 13 | 10, 12 | mpbir 231 | 1 ⊢ +Q :(Q × Q)⟶Q |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 × cxp 5621 ↾ cres 5625 ∘ ccom 5627 ⟶wf 6482 Ncnpi 10757 +pQ cplpq 10761 Qcnq 10765 [Q]cerq 10767 +Q cplq 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-pli 10786 df-mi 10787 df-lti 10788 df-plpq 10821 df-enq 10824 df-nq 10825 df-erq 10826 df-plq 10827 df-1nq 10829 |
| This theorem is referenced by: addcomnq 10864 adderpq 10869 addassnq 10871 distrnq 10874 ltanq 10884 ltexnq 10888 nsmallnq 10890 ltbtwnnq 10891 prlem934 10946 ltaddpr 10947 ltexprlem2 10950 ltexprlem3 10951 ltexprlem4 10952 ltexprlem6 10954 ltexprlem7 10955 prlem936 10960 |
| Copyright terms: Public domain | W3C validator |