MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Structured version   Visualization version   GIF version

Theorem addnqf 10901
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf +Q :(Q × Q)⟶Q

Proof of Theorem addnqf
StepHypRef Expression
1 nqerf 10883 . . . 4 [Q]:(N × N)⟶Q
2 addpqf 10897 . . . 4 +pQ :((N × N) × (N × N))⟶(N × N)
3 fco 6712 . . . 4 (([Q]:(N × N)⟶Q ∧ +pQ :((N × N) × (N × N))⟶(N × N)) → ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q)
41, 2, 3mp2an 692 . . 3 ([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q
5 elpqn 10878 . . . . 5 (𝑥Q𝑥 ∈ (N × N))
65ssriv 3950 . . . 4 Q ⊆ (N × N)
7 xpss12 5653 . . . 4 ((Q ⊆ (N × N) ∧ Q ⊆ (N × N)) → (Q × Q) ⊆ ((N × N) × (N × N)))
86, 6, 7mp2an 692 . . 3 (Q × Q) ⊆ ((N × N) × (N × N))
9 fssres 6726 . . 3 ((([Q] ∘ +pQ ):((N × N) × (N × N))⟶Q ∧ (Q × Q) ⊆ ((N × N) × (N × N))) → (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
104, 8, 9mp2an 692 . 2 (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q
11 df-plq 10867 . . 3 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
1211feq1i 6679 . 2 ( +Q :(Q × Q)⟶Q ↔ (([Q] ∘ +pQ ) ↾ (Q × Q)):(Q × Q)⟶Q)
1310, 12mpbir 231 1 +Q :(Q × Q)⟶Q
Colors of variables: wff setvar class
Syntax hints:  wss 3914   × cxp 5636  cres 5640  ccom 5642  wf 6507  Ncnpi 10797   +pQ cplpq 10801  Qcnq 10805  [Q]cerq 10807   +Q cplq 10808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-1nq 10869
This theorem is referenced by:  addcomnq  10904  adderpq  10909  addassnq  10911  distrnq  10914  ltanq  10924  ltexnq  10928  nsmallnq  10930  ltbtwnnq  10931  prlem934  10986  ltaddpr  10987  ltexprlem2  10990  ltexprlem3  10991  ltexprlem4  10992  ltexprlem6  10994  ltexprlem7  10995  prlem936  11000
  Copyright terms: Public domain W3C validator