MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclnq Structured version   Visualization version   GIF version

Theorem addclnq 10828
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addclnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)

Proof of Theorem addclnq
StepHypRef Expression
1 addpqnq 10821 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
2 elpqn 10808 . . . 4 (𝐴Q𝐴 ∈ (N × N))
3 elpqn 10808 . . . 4 (𝐵Q𝐵 ∈ (N × N))
4 addpqf 10827 . . . . 5 +pQ :((N × N) × (N × N))⟶(N × N)
54fovcl 7469 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N))
62, 3, 5syl2an 596 . . 3 ((𝐴Q𝐵Q) → (𝐴 +pQ 𝐵) ∈ (N × N))
7 nqercl 10814 . . 3 ((𝐴 +pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q)
86, 7syl 17 . 2 ((𝐴Q𝐵Q) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q)
91, 8eqeltrd 2829 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110   × cxp 5612  cfv 6477  (class class class)co 7341  Ncnpi 10727   +pQ cplpq 10731  Qcnq 10735  [Q]cerq 10737   +Q cplq 10738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8617  df-ni 10755  df-pli 10756  df-mi 10757  df-lti 10758  df-plpq 10791  df-enq 10794  df-nq 10795  df-erq 10796  df-plq 10797  df-1nq 10799
This theorem is referenced by:  halfnq  10859  plpv  10893  dmplp  10895  addclprlem2  10900  addclpr  10901  addasspr  10905  distrlem1pr  10908  distrlem4pr  10909  distrlem5pr  10910  ltaddpr  10917  ltexprlem6  10924  ltexprlem7  10925  prlem936  10930
  Copyright terms: Public domain W3C validator