MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclnq Structured version   Visualization version   GIF version

Theorem addclnq 10104
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addclnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)

Proof of Theorem addclnq
StepHypRef Expression
1 addpqnq 10097 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
2 elpqn 10084 . . . 4 (𝐴Q𝐴 ∈ (N × N))
3 elpqn 10084 . . . 4 (𝐵Q𝐵 ∈ (N × N))
4 addpqf 10103 . . . . 5 +pQ :((N × N) × (N × N))⟶(N × N)
54fovcl 7044 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N))
62, 3, 5syl2an 589 . . 3 ((𝐴Q𝐵Q) → (𝐴 +pQ 𝐵) ∈ (N × N))
7 nqercl 10090 . . 3 ((𝐴 +pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q)
86, 7syl 17 . 2 ((𝐴Q𝐵Q) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q)
91, 8eqeltrd 2859 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107   × cxp 5355  cfv 6137  (class class class)co 6924  Ncnpi 10003   +pQ cplpq 10007  Qcnq 10011  [Q]cerq 10013   +Q cplq 10014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-omul 7850  df-er 8028  df-ni 10031  df-pli 10032  df-mi 10033  df-lti 10034  df-plpq 10067  df-enq 10070  df-nq 10071  df-erq 10072  df-plq 10073  df-1nq 10075
This theorem is referenced by:  halfnq  10135  plpv  10169  dmplp  10171  addclprlem2  10176  addclpr  10177  addasspr  10181  distrlem1pr  10184  distrlem4pr  10185  distrlem5pr  10186  ltaddpr  10193  ltexprlem6  10200  ltexprlem7  10201  prlem936  10206
  Copyright terms: Public domain W3C validator