| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclnq | Structured version Visualization version GIF version | ||
| Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) ∈ Q) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addpqnq 10839 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) | |
| 2 | elpqn 10826 | . . . 4 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 3 | elpqn 10826 | . . . 4 ⊢ (𝐵 ∈ Q → 𝐵 ∈ (N × N)) | |
| 4 | addpqf 10845 | . . . . 5 ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | |
| 5 | 4 | fovcl 7483 | . . . 4 ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N)) |
| 6 | 2, 3, 5 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +pQ 𝐵) ∈ (N × N)) |
| 7 | nqercl 10832 | . . 3 ⊢ ((𝐴 +pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q) |
| 9 | 1, 8 | eqeltrd 2833 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) ∈ Q) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 × cxp 5619 ‘cfv 6489 (class class class)co 7355 Ncnpi 10745 +pQ cplpq 10749 Qcnq 10753 [Q]cerq 10755 +Q cplq 10756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ni 10773 df-pli 10774 df-mi 10775 df-lti 10776 df-plpq 10809 df-enq 10812 df-nq 10813 df-erq 10814 df-plq 10815 df-1nq 10817 |
| This theorem is referenced by: halfnq 10877 plpv 10911 dmplp 10913 addclprlem2 10918 addclpr 10919 addasspr 10923 distrlem1pr 10926 distrlem4pr 10927 distrlem5pr 10928 ltaddpr 10935 ltexprlem6 10942 ltexprlem7 10943 prlem936 10948 |
| Copyright terms: Public domain | W3C validator |