MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclnq Structured version   Visualization version   GIF version

Theorem addclnq 10959
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
addclnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)

Proof of Theorem addclnq
StepHypRef Expression
1 addpqnq 10952 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵)))
2 elpqn 10939 . . . 4 (𝐴Q𝐴 ∈ (N × N))
3 elpqn 10939 . . . 4 (𝐵Q𝐵 ∈ (N × N))
4 addpqf 10958 . . . . 5 +pQ :((N × N) × (N × N))⟶(N × N)
54fovcl 7535 . . . 4 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) ∈ (N × N))
62, 3, 5syl2an 596 . . 3 ((𝐴Q𝐵Q) → (𝐴 +pQ 𝐵) ∈ (N × N))
7 nqercl 10945 . . 3 ((𝐴 +pQ 𝐵) ∈ (N × N) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q)
86, 7syl 17 . 2 ((𝐴Q𝐵Q) → ([Q]‘(𝐴 +pQ 𝐵)) ∈ Q)
91, 8eqeltrd 2834 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   × cxp 5652  cfv 6531  (class class class)co 7405  Ncnpi 10858   +pQ cplpq 10862  Qcnq 10866  [Q]cerq 10868   +Q cplq 10869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8719  df-ni 10886  df-pli 10887  df-mi 10888  df-lti 10889  df-plpq 10922  df-enq 10925  df-nq 10926  df-erq 10927  df-plq 10928  df-1nq 10930
This theorem is referenced by:  halfnq  10990  plpv  11024  dmplp  11026  addclprlem2  11031  addclpr  11032  addasspr  11036  distrlem1pr  11039  distrlem4pr  11040  distrlem5pr  11041  ltaddpr  11048  ltexprlem6  11055  ltexprlem7  11056  prlem936  11061
  Copyright terms: Public domain W3C validator