MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Structured version   Visualization version   GIF version

Theorem mulassnq 9984
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 9922 . . . . . . 7 (((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)) = ((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶)))
2 mulasspi 9922 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
31, 2opeq12i 4545 . . . . . 6 ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
4 elpqn 9950 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
543ad2ant1 1127 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
6 elpqn 9950 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
763ad2ant2 1128 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
8 mulpipq2 9964 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
95, 7, 8syl2anc 567 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
10 relxp 5267 . . . . . . . . 9 Rel (N × N)
11 elpqn 9950 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
12113ad2ant3 1129 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
13 1st2nd 7364 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
1410, 12, 13sylancr 569 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
159, 14oveq12d 6812 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩))
16 xp1st 7348 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
175, 16syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
18 xp1st 7348 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
197, 18syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
20 mulclpi 9918 . . . . . . . . 9 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
2117, 19, 20syl2anc 567 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
22 xp2nd 7349 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
235, 22syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
24 xp2nd 7349 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
257, 24syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
26 mulclpi 9918 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
2723, 25, 26syl2anc 567 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
28 xp1st 7348 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
2912, 28syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
30 xp2nd 7349 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
3112, 30syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
32 mulpipq 9965 . . . . . . . 8 (((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3321, 27, 29, 31, 32syl22anc 1477 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3415, 33eqtrd 2805 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
35 1st2nd 7364 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3610, 5, 35sylancr 569 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
37 mulpipq2 9964 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
387, 12, 37syl2anc 567 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
3936, 38oveq12d 6812 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
40 mulclpi 9918 . . . . . . . . 9 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
4119, 29, 40syl2anc 567 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
42 mulclpi 9918 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
4325, 31, 42syl2anc 567 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
44 mulpipq 9965 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4517, 23, 41, 43, 44syl22anc 1477 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4639, 45eqtrd 2805 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
473, 34, 463eqtr4a 2831 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (𝐴 ·pQ (𝐵 ·pQ 𝐶)))
4847fveq2d 6337 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶)) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶))))
49 mulerpq 9982 . . . 4 (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶))
50 mulerpq 9982 . . . 4 (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶)))
5148, 49, 503eqtr4g 2830 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
52 mulpqnq 9966 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
53523adant3 1126 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
54 nqerid 9958 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
5554eqcomd 2777 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
56553ad2ant3 1129 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
5753, 56oveq12d 6812 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)))
58 nqerid 9958 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
5958eqcomd 2777 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
60593ad2ant1 1127 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
61 mulpqnq 9966 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
62613adant1 1124 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
6360, 62oveq12d 6812 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 ·Q 𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
6451, 57, 633eqtr4d 2815 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
65 mulnqf 9974 . . . 4 ·Q :(Q × Q)⟶Q
6665fdmi 6193 . . 3 dom ·Q = (Q × Q)
67 0nnq 9949 . . 3 ¬ ∅ ∈ Q
6866, 67ndmovass 6970 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
6964, 68pm2.61i 176 1 ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1071   = wceq 1631  wcel 2145  cop 4323   × cxp 5248  Rel wrel 5255  cfv 6032  (class class class)co 6794  1st c1st 7314  2nd c2nd 7315  Ncnpi 9869   ·N cmi 9871   ·pQ cmpq 9874  Qcnq 9877  [Q]cerq 9879   ·Q cmq 9881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-omul 7719  df-er 7897  df-ni 9897  df-mi 9899  df-lti 9900  df-mpq 9934  df-enq 9936  df-nq 9937  df-erq 9938  df-mq 9940  df-1nq 9941
This theorem is referenced by:  recmulnq  9989  halfnq  10001  ltrnq  10004  addclprlem2  10042  mulclprlem  10044  mulasspr  10049  1idpr  10054  prlem934  10058  prlem936  10072  reclem3pr  10074
  Copyright terms: Public domain W3C validator