MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulassnq Structured version   Visualization version   GIF version

Theorem mulassnq 10895
Description: Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulassnq ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))

Proof of Theorem mulassnq
StepHypRef Expression
1 mulasspi 10833 . . . . . . 7 (((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)) = ((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶)))
2 mulasspi 10833 . . . . . . 7 (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶)) = ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))
31, 2opeq12i 4835 . . . . . 6 ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩ = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩
4 elpqn 10861 . . . . . . . . . 10 (𝐴Q𝐴 ∈ (N × N))
543ad2ant1 1133 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
6 elpqn 10861 . . . . . . . . . 10 (𝐵Q𝐵 ∈ (N × N))
763ad2ant2 1134 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
8 mulpipq2 10875 . . . . . . . . 9 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
95, 7, 8syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
10 relxp 5651 . . . . . . . . 9 Rel (N × N)
11 elpqn 10861 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
12113ad2ant3 1135 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
13 1st2nd 7971 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐶 ∈ (N × N)) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
1410, 12, 13sylancr 587 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
159, 14oveq12d 7375 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩))
16 xp1st 7953 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (1st𝐴) ∈ N)
175, 16syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐴) ∈ N)
18 xp1st 7953 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (1st𝐵) ∈ N)
197, 18syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (1st𝐵) ∈ N)
20 mulclpi 10829 . . . . . . . . 9 (((1st𝐴) ∈ N ∧ (1st𝐵) ∈ N) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
2117, 19, 20syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐴) ·N (1st𝐵)) ∈ N)
22 xp2nd 7954 . . . . . . . . . 10 (𝐴 ∈ (N × N) → (2nd𝐴) ∈ N)
235, 22syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐴) ∈ N)
24 xp2nd 7954 . . . . . . . . . 10 (𝐵 ∈ (N × N) → (2nd𝐵) ∈ N)
257, 24syl 17 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐵) ∈ N)
26 mulclpi 10829 . . . . . . . . 9 (((2nd𝐴) ∈ N ∧ (2nd𝐵) ∈ N) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
2723, 25, 26syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐴) ·N (2nd𝐵)) ∈ N)
28 xp1st 7953 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
2912, 28syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
30 xp2nd 7954 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
3112, 30syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
32 mulpipq 10876 . . . . . . . 8 (((((1st𝐴) ·N (1st𝐵)) ∈ N ∧ ((2nd𝐴) ·N (2nd𝐵)) ∈ N) ∧ ((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N)) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3321, 27, 29, 31, 32syl22anc 837 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ ·pQ ⟨(1st𝐶), (2nd𝐶)⟩) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
3415, 33eqtrd 2776 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = ⟨(((1st𝐴) ·N (1st𝐵)) ·N (1st𝐶)), (((2nd𝐴) ·N (2nd𝐵)) ·N (2nd𝐶))⟩)
35 1st2nd 7971 . . . . . . . . 9 ((Rel (N × N) ∧ 𝐴 ∈ (N × N)) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
3610, 5, 35sylancr 587 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
37 mulpipq2 10875 . . . . . . . . 9 ((𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
387, 12, 37syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·pQ 𝐶) = ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩)
3936, 38oveq12d 7375 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩))
40 mulclpi 10829 . . . . . . . . 9 (((1st𝐵) ∈ N ∧ (1st𝐶) ∈ N) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
4119, 29, 40syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐵) ·N (1st𝐶)) ∈ N)
42 mulclpi 10829 . . . . . . . . 9 (((2nd𝐵) ∈ N ∧ (2nd𝐶) ∈ N) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
4325, 31, 42syl2anc 584 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → ((2nd𝐵) ·N (2nd𝐶)) ∈ N)
44 mulpipq 10876 . . . . . . . 8 ((((1st𝐴) ∈ N ∧ (2nd𝐴) ∈ N) ∧ (((1st𝐵) ·N (1st𝐶)) ∈ N ∧ ((2nd𝐵) ·N (2nd𝐶)) ∈ N)) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4517, 23, 41, 43, 44syl22anc 837 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → (⟨(1st𝐴), (2nd𝐴)⟩ ·pQ ⟨((1st𝐵) ·N (1st𝐶)), ((2nd𝐵) ·N (2nd𝐶))⟩) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
4639, 45eqtrd 2776 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·pQ (𝐵 ·pQ 𝐶)) = ⟨((1st𝐴) ·N ((1st𝐵) ·N (1st𝐶))), ((2nd𝐴) ·N ((2nd𝐵) ·N (2nd𝐶)))⟩)
473, 34, 463eqtr4a 2802 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·pQ 𝐵) ·pQ 𝐶) = (𝐴 ·pQ (𝐵 ·pQ 𝐶)))
4847fveq2d 6846 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶)) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶))))
49 mulerpq 10893 . . . 4 (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = ([Q]‘((𝐴 ·pQ 𝐵) ·pQ 𝐶))
50 mulerpq 10893 . . . 4 (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))) = ([Q]‘(𝐴 ·pQ (𝐵 ·pQ 𝐶)))
5148, 49, 503eqtr4g 2801 . . 3 ((𝐴Q𝐵Q𝐶Q) → (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
52 mulpqnq 10877 . . . . 5 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
53523adant3 1132 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵)))
54 nqerid 10869 . . . . . 6 (𝐶Q → ([Q]‘𝐶) = 𝐶)
5554eqcomd 2742 . . . . 5 (𝐶Q𝐶 = ([Q]‘𝐶))
56553ad2ant3 1135 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐶 = ([Q]‘𝐶))
5753, 56oveq12d 7375 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (([Q]‘(𝐴 ·pQ 𝐵)) ·Q ([Q]‘𝐶)))
58 nqerid 10869 . . . . . 6 (𝐴Q → ([Q]‘𝐴) = 𝐴)
5958eqcomd 2742 . . . . 5 (𝐴Q𝐴 = ([Q]‘𝐴))
60593ad2ant1 1133 . . . 4 ((𝐴Q𝐵Q𝐶Q) → 𝐴 = ([Q]‘𝐴))
61 mulpqnq 10877 . . . . 5 ((𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
62613adant1 1130 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐵 ·Q 𝐶) = ([Q]‘(𝐵 ·pQ 𝐶)))
6360, 62oveq12d 7375 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 ·Q (𝐵 ·Q 𝐶)) = (([Q]‘𝐴) ·Q ([Q]‘(𝐵 ·pQ 𝐶))))
6451, 57, 633eqtr4d 2786 . 2 ((𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
65 mulnqf 10885 . . . 4 ·Q :(Q × Q)⟶Q
6665fdmi 6680 . . 3 dom ·Q = (Q × Q)
67 0nnq 10860 . . 3 ¬ ∅ ∈ Q
6866, 67ndmovass 7542 . 2 (¬ (𝐴Q𝐵Q𝐶Q) → ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)))
6964, 68pm2.61i 182 1 ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  w3a 1087   = wceq 1541  wcel 2106  cop 4592   × cxp 5631  Rel wrel 5638  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Ncnpi 10780   ·N cmi 10782   ·pQ cmpq 10785  Qcnq 10788  [Q]cerq 10790   ·Q cmq 10792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-ni 10808  df-mi 10810  df-lti 10811  df-mpq 10845  df-enq 10847  df-nq 10848  df-erq 10849  df-mq 10851  df-1nq 10852
This theorem is referenced by:  recmulnq  10900  halfnq  10912  ltrnq  10915  addclprlem2  10953  mulclprlem  10955  mulasspr  10960  1idpr  10965  prlem934  10969  prlem936  10983  reclem3pr  10985
  Copyright terms: Public domain W3C validator