![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version |
Description: Corollary of nqereu 10998: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 10999 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
2 | ffun 6750 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
4 | elpqn 10994 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
6 | enqer 10990 | . . . . 5 ⊢ ~Q Er (N × N) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
8 | 7, 4 | erref 8783 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
9 | df-erq 10982 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
10 | 9 | breqi 5172 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
11 | brinxp2 5777 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) |
13 | 4, 5, 8, 12 | syl21anbrc 1344 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
14 | funbrfv 6971 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 class class class wbr 5166 × cxp 5698 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 Er wer 8760 Ncnpi 10913 ~Q ceq 10920 Qcnq 10921 [Q]cerq 10923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-ni 10941 df-mi 10943 df-lti 10944 df-enq 10980 df-nq 10981 df-erq 10982 df-1nq 10985 |
This theorem is referenced by: addassnq 11027 mulassnq 11028 distrnq 11030 mulidnq 11032 recmulnq 11033 1lt2nq 11042 ltexnq 11044 prlem934 11102 |
Copyright terms: Public domain | W3C validator |