| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version | ||
| Description: Corollary of nqereu 10889: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10890 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
| 2 | ffun 6694 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
| 4 | elpqn 10885 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
| 6 | enqer 10881 | . . . . 5 ⊢ ~Q Er (N × N) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
| 8 | 7, 4 | erref 8694 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
| 9 | df-erq 10873 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
| 10 | 9 | breqi 5116 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
| 11 | brinxp2 5719 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) |
| 13 | 4, 5, 8, 12 | syl21anbrc 1345 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
| 14 | funbrfv 6912 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
| 15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 class class class wbr 5110 × cxp 5639 Fun wfun 6508 ⟶wf 6510 ‘cfv 6514 Er wer 8671 Ncnpi 10804 ~Q ceq 10811 Qcnq 10812 [Q]cerq 10814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-mi 10834 df-lti 10835 df-enq 10871 df-nq 10872 df-erq 10873 df-1nq 10876 |
| This theorem is referenced by: addassnq 10918 mulassnq 10919 distrnq 10921 mulidnq 10923 recmulnq 10924 1lt2nq 10933 ltexnq 10935 prlem934 10993 |
| Copyright terms: Public domain | W3C validator |