MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerid Structured version   Visualization version   GIF version

Theorem nqerid 10831
Description: Corollary of nqereu 10827: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerid (𝐴Q → ([Q]‘𝐴) = 𝐴)

Proof of Theorem nqerid
StepHypRef Expression
1 nqerf 10828 . . 3 [Q]:(N × N)⟶Q
2 ffun 6659 . . 3 ([Q]:(N × N)⟶Q → Fun [Q])
31, 2ax-mp 5 . 2 Fun [Q]
4 elpqn 10823 . . 3 (𝐴Q𝐴 ∈ (N × N))
5 id 22 . . 3 (𝐴Q𝐴Q)
6 enqer 10819 . . . . 5 ~Q Er (N × N)
76a1i 11 . . . 4 (𝐴Q → ~Q Er (N × N))
87, 4erref 8648 . . 3 (𝐴Q𝐴 ~Q 𝐴)
9 df-erq 10811 . . . . 5 [Q] = ( ~Q ∩ ((N × N) × Q))
109breqi 5099 . . . 4 (𝐴[Q]𝐴𝐴( ~Q ∩ ((N × N) × Q))𝐴)
11 brinxp2 5697 . . . 4 (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
1210, 11bitri 275 . . 3 (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
134, 5, 8, 12syl21anbrc 1345 . 2 (𝐴Q𝐴[Q]𝐴)
14 funbrfv 6876 . 2 (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴))
153, 13, 14mpsyl 68 1 (𝐴Q → ([Q]‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897   class class class wbr 5093   × cxp 5617  Fun wfun 6480  wf 6482  cfv 6486   Er wer 8625  Ncnpi 10742   ~Q ceq 10749  Qcnq 10750  [Q]cerq 10752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ni 10770  df-mi 10772  df-lti 10773  df-enq 10809  df-nq 10810  df-erq 10811  df-1nq 10814
This theorem is referenced by:  addassnq  10856  mulassnq  10857  distrnq  10859  mulidnq  10861  recmulnq  10862  1lt2nq  10871  ltexnq  10873  prlem934  10931
  Copyright terms: Public domain W3C validator