MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerid Structured version   Visualization version   GIF version

Theorem nqerid 10821
Description: Corollary of nqereu 10817: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerid (𝐴Q → ([Q]‘𝐴) = 𝐴)

Proof of Theorem nqerid
StepHypRef Expression
1 nqerf 10818 . . 3 [Q]:(N × N)⟶Q
2 ffun 6654 . . 3 ([Q]:(N × N)⟶Q → Fun [Q])
31, 2ax-mp 5 . 2 Fun [Q]
4 elpqn 10813 . . 3 (𝐴Q𝐴 ∈ (N × N))
5 id 22 . . 3 (𝐴Q𝐴Q)
6 enqer 10809 . . . . 5 ~Q Er (N × N)
76a1i 11 . . . 4 (𝐴Q → ~Q Er (N × N))
87, 4erref 8642 . . 3 (𝐴Q𝐴 ~Q 𝐴)
9 df-erq 10801 . . . . 5 [Q] = ( ~Q ∩ ((N × N) × Q))
109breqi 5097 . . . 4 (𝐴[Q]𝐴𝐴( ~Q ∩ ((N × N) × Q))𝐴)
11 brinxp2 5694 . . . 4 (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
1210, 11bitri 275 . . 3 (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
134, 5, 8, 12syl21anbrc 1345 . 2 (𝐴Q𝐴[Q]𝐴)
14 funbrfv 6870 . 2 (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴))
153, 13, 14mpsyl 68 1 (𝐴Q → ([Q]‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3901   class class class wbr 5091   × cxp 5614  Fun wfun 6475  wf 6477  cfv 6481   Er wer 8619  Ncnpi 10732   ~Q ceq 10739  Qcnq 10740  [Q]cerq 10742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10760  df-mi 10762  df-lti 10763  df-enq 10799  df-nq 10800  df-erq 10801  df-1nq 10804
This theorem is referenced by:  addassnq  10846  mulassnq  10847  distrnq  10849  mulidnq  10851  recmulnq  10852  1lt2nq  10861  ltexnq  10863  prlem934  10921
  Copyright terms: Public domain W3C validator