| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version | ||
| Description: Corollary of nqereu 10943: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10944 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
| 2 | ffun 6709 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
| 4 | elpqn 10939 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
| 6 | enqer 10935 | . . . . 5 ⊢ ~Q Er (N × N) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
| 8 | 7, 4 | erref 8739 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
| 9 | df-erq 10927 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
| 10 | 9 | breqi 5125 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
| 11 | brinxp2 5732 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) |
| 13 | 4, 5, 8, 12 | syl21anbrc 1345 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
| 14 | funbrfv 6927 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
| 15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 class class class wbr 5119 × cxp 5652 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 Er wer 8716 Ncnpi 10858 ~Q ceq 10865 Qcnq 10866 [Q]cerq 10868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ni 10886 df-mi 10888 df-lti 10889 df-enq 10925 df-nq 10926 df-erq 10927 df-1nq 10930 |
| This theorem is referenced by: addassnq 10972 mulassnq 10973 distrnq 10975 mulidnq 10977 recmulnq 10978 1lt2nq 10987 ltexnq 10989 prlem934 11047 |
| Copyright terms: Public domain | W3C validator |