MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerid Structured version   Visualization version   GIF version

Theorem nqerid 10927
Description: Corollary of nqereu 10923: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerid (𝐴Q → ([Q]‘𝐴) = 𝐴)

Proof of Theorem nqerid
StepHypRef Expression
1 nqerf 10924 . . 3 [Q]:(N × N)⟶Q
2 ffun 6713 . . 3 ([Q]:(N × N)⟶Q → Fun [Q])
31, 2ax-mp 5 . 2 Fun [Q]
4 elpqn 10919 . . 3 (𝐴Q𝐴 ∈ (N × N))
5 id 22 . . 3 (𝐴Q𝐴Q)
6 enqer 10915 . . . . 5 ~Q Er (N × N)
76a1i 11 . . . 4 (𝐴Q → ~Q Er (N × N))
87, 4erref 8722 . . 3 (𝐴Q𝐴 ~Q 𝐴)
9 df-erq 10907 . . . . 5 [Q] = ( ~Q ∩ ((N × N) × Q))
109breqi 5147 . . . 4 (𝐴[Q]𝐴𝐴( ~Q ∩ ((N × N) × Q))𝐴)
11 brinxp2 5746 . . . 4 (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
1210, 11bitri 275 . . 3 (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
134, 5, 8, 12syl21anbrc 1341 . 2 (𝐴Q𝐴[Q]𝐴)
14 funbrfv 6935 . 2 (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴))
153, 13, 14mpsyl 68 1 (𝐴Q → ([Q]‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cin 3942   class class class wbr 5141   × cxp 5667  Fun wfun 6530  wf 6532  cfv 6536   Er wer 8699  Ncnpi 10838   ~Q ceq 10845  Qcnq 10846  [Q]cerq 10848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-oadd 8468  df-omul 8469  df-er 8702  df-ni 10866  df-mi 10868  df-lti 10869  df-enq 10905  df-nq 10906  df-erq 10907  df-1nq 10910
This theorem is referenced by:  addassnq  10952  mulassnq  10953  distrnq  10955  mulidnq  10957  recmulnq  10958  1lt2nq  10967  ltexnq  10969  prlem934  11027
  Copyright terms: Public domain W3C validator