| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version | ||
| Description: Corollary of nqereu 10817: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqerf 10818 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
| 2 | ffun 6654 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
| 4 | elpqn 10813 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
| 5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
| 6 | enqer 10809 | . . . . 5 ⊢ ~Q Er (N × N) | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
| 8 | 7, 4 | erref 8642 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
| 9 | df-erq 10801 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
| 10 | 9 | breqi 5097 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
| 11 | brinxp2 5694 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) |
| 13 | 4, 5, 8, 12 | syl21anbrc 1345 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
| 14 | funbrfv 6870 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
| 15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 class class class wbr 5091 × cxp 5614 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 Er wer 8619 Ncnpi 10732 ~Q ceq 10739 Qcnq 10740 [Q]cerq 10742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10760 df-mi 10762 df-lti 10763 df-enq 10799 df-nq 10800 df-erq 10801 df-1nq 10804 |
| This theorem is referenced by: addassnq 10846 mulassnq 10847 distrnq 10849 mulidnq 10851 recmulnq 10852 1lt2nq 10861 ltexnq 10863 prlem934 10921 |
| Copyright terms: Public domain | W3C validator |