![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version |
Description: Corollary of nqereu 9952: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 9953 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
2 | ffun 6188 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
4 | elpqn 9948 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
6 | enqer 9944 | . . . . 5 ⊢ ~Q Er (N × N) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
8 | 7, 4 | erref 7915 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
9 | df-erq 9936 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
10 | 9 | breqi 4790 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
11 | brinxp2 5320 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ (𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q ∧ 𝐴 ~Q 𝐴)) | |
12 | 10, 11 | bitri 264 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ (𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q ∧ 𝐴 ~Q 𝐴)) |
13 | 4, 5, 8, 12 | syl3anbrc 1427 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
14 | funbrfv 6375 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ∩ cin 3720 class class class wbr 4784 × cxp 5247 Fun wfun 6025 ⟶wf 6027 ‘cfv 6031 Er wer 7892 Ncnpi 9867 ~Q ceq 9874 Qcnq 9875 [Q]cerq 9877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-omul 7717 df-er 7895 df-ni 9895 df-mi 9897 df-lti 9898 df-enq 9934 df-nq 9935 df-erq 9936 df-1nq 9939 |
This theorem is referenced by: addassnq 9981 mulassnq 9982 distrnq 9984 mulidnq 9986 recmulnq 9987 1lt2nq 9996 ltexnq 9998 prlem934 10056 |
Copyright terms: Public domain | W3C validator |