Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version |
Description: Corollary of nqereu 10616: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 10617 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
2 | ffun 6587 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
4 | elpqn 10612 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
6 | enqer 10608 | . . . . 5 ⊢ ~Q Er (N × N) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
8 | 7, 4 | erref 8476 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
9 | df-erq 10600 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
10 | 9 | breqi 5076 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
11 | brinxp2 5655 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) | |
12 | 10, 11 | bitri 274 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) |
13 | 4, 5, 8, 12 | syl21anbrc 1342 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
14 | funbrfv 6802 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 class class class wbr 5070 × cxp 5578 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 Er wer 8453 Ncnpi 10531 ~Q ceq 10538 Qcnq 10539 [Q]cerq 10541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ni 10559 df-mi 10561 df-lti 10562 df-enq 10598 df-nq 10599 df-erq 10600 df-1nq 10603 |
This theorem is referenced by: addassnq 10645 mulassnq 10646 distrnq 10648 mulidnq 10650 recmulnq 10651 1lt2nq 10660 ltexnq 10662 prlem934 10720 |
Copyright terms: Public domain | W3C validator |