![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nqerid | Structured version Visualization version GIF version |
Description: Corollary of nqereu 10923: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nqerid | ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nqerf 10924 | . . 3 ⊢ [Q]:(N × N)⟶Q | |
2 | ffun 6713 | . . 3 ⊢ ([Q]:(N × N)⟶Q → Fun [Q]) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun [Q] |
4 | elpqn 10919 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | |
5 | id 22 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ∈ Q) | |
6 | enqer 10915 | . . . . 5 ⊢ ~Q Er (N × N) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ Q → ~Q Er (N × N)) |
8 | 7, 4 | erref 8722 | . . 3 ⊢ (𝐴 ∈ Q → 𝐴 ~Q 𝐴) |
9 | df-erq 10907 | . . . . 5 ⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | |
10 | 9 | breqi 5147 | . . . 4 ⊢ (𝐴[Q]𝐴 ↔ 𝐴( ~Q ∩ ((N × N) × Q))𝐴) |
11 | brinxp2 5746 | . . . 4 ⊢ (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴 ∈ Q) ∧ 𝐴 ~Q 𝐴)) |
13 | 4, 5, 8, 12 | syl21anbrc 1341 | . 2 ⊢ (𝐴 ∈ Q → 𝐴[Q]𝐴) |
14 | funbrfv 6935 | . 2 ⊢ (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴)) | |
15 | 3, 13, 14 | mpsyl 68 | 1 ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∩ cin 3942 class class class wbr 5141 × cxp 5667 Fun wfun 6530 ⟶wf 6532 ‘cfv 6536 Er wer 8699 Ncnpi 10838 ~Q ceq 10845 Qcnq 10846 [Q]cerq 10848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-omul 8469 df-er 8702 df-ni 10866 df-mi 10868 df-lti 10869 df-enq 10905 df-nq 10906 df-erq 10907 df-1nq 10910 |
This theorem is referenced by: addassnq 10952 mulassnq 10953 distrnq 10955 mulidnq 10957 recmulnq 10958 1lt2nq 10967 ltexnq 10969 prlem934 11027 |
Copyright terms: Public domain | W3C validator |