MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqerid Structured version   Visualization version   GIF version

Theorem nqerid 10971
Description: Corollary of nqereu 10967: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqerid (𝐴Q → ([Q]‘𝐴) = 𝐴)

Proof of Theorem nqerid
StepHypRef Expression
1 nqerf 10968 . . 3 [Q]:(N × N)⟶Q
2 ffun 6740 . . 3 ([Q]:(N × N)⟶Q → Fun [Q])
31, 2ax-mp 5 . 2 Fun [Q]
4 elpqn 10963 . . 3 (𝐴Q𝐴 ∈ (N × N))
5 id 22 . . 3 (𝐴Q𝐴Q)
6 enqer 10959 . . . . 5 ~Q Er (N × N)
76a1i 11 . . . 4 (𝐴Q → ~Q Er (N × N))
87, 4erref 8764 . . 3 (𝐴Q𝐴 ~Q 𝐴)
9 df-erq 10951 . . . . 5 [Q] = ( ~Q ∩ ((N × N) × Q))
109breqi 5154 . . . 4 (𝐴[Q]𝐴𝐴( ~Q ∩ ((N × N) × Q))𝐴)
11 brinxp2 5766 . . . 4 (𝐴( ~Q ∩ ((N × N) × Q))𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
1210, 11bitri 275 . . 3 (𝐴[Q]𝐴 ↔ ((𝐴 ∈ (N × N) ∧ 𝐴Q) ∧ 𝐴 ~Q 𝐴))
134, 5, 8, 12syl21anbrc 1343 . 2 (𝐴Q𝐴[Q]𝐴)
14 funbrfv 6958 . 2 (Fun [Q] → (𝐴[Q]𝐴 → ([Q]‘𝐴) = 𝐴))
153, 13, 14mpsyl 68 1 (𝐴Q → ([Q]‘𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962   class class class wbr 5148   × cxp 5687  Fun wfun 6557  wf 6559  cfv 6563   Er wer 8741  Ncnpi 10882   ~Q ceq 10889  Qcnq 10890  [Q]cerq 10892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-mi 10912  df-lti 10913  df-enq 10949  df-nq 10950  df-erq 10951  df-1nq 10954
This theorem is referenced by:  addassnq  10996  mulassnq  10997  distrnq  10999  mulidnq  11001  recmulnq  11002  1lt2nq  11011  ltexnq  11013  prlem934  11071
  Copyright terms: Public domain W3C validator