MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem2 Structured version   Visualization version   GIF version

Theorem addclprlem2 10773
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem addclprlem2
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclprlem1 10772 . . . . 5 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
21adantlr 712 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
3 addclprlem1 10772 . . . . . 6 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q ( +Q 𝑔) → ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵))
4 addcomnq 10707 . . . . . . 7 (𝑔 +Q ) = ( +Q 𝑔)
54breq2i 5082 . . . . . 6 (𝑥 <Q (𝑔 +Q ) ↔ 𝑥 <Q ( +Q 𝑔))
64fveq2i 6777 . . . . . . . . 9 (*Q‘(𝑔 +Q )) = (*Q‘( +Q 𝑔))
76oveq2i 7286 . . . . . . . 8 (𝑥 ·Q (*Q‘(𝑔 +Q ))) = (𝑥 ·Q (*Q‘( +Q 𝑔)))
87oveq1i 7285 . . . . . . 7 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) = ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q )
98eleq1i 2829 . . . . . 6 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵 ↔ ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵)
103, 5, 93imtr4g 296 . . . . 5 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
1110adantll 711 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
122, 11jcad 513 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵)))
13 simpl 483 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)))
14 simpl 483 . . . . 5 ((𝐴P𝑔𝐴) → 𝐴P)
15 simpl 483 . . . . 5 ((𝐵P𝐵) → 𝐵P)
1614, 15anim12i 613 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝐴P𝐵P))
17 df-plp 10739 . . . . 5 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
18 addclnq 10701 . . . . 5 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
1917, 18genpprecl 10757 . . . 4 ((𝐴P𝐵P) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2013, 16, 193syl 18 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2112, 20syld 47 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
22 distrnq 10717 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ))
23 mulassnq 10715 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
2422, 23eqtr3i 2768 . . . 4 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
25 mulcomnq 10709 . . . . . . 7 ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q )))
26 elprnq 10747 . . . . . . . . 9 ((𝐴P𝑔𝐴) → 𝑔Q)
27 elprnq 10747 . . . . . . . . 9 ((𝐵P𝐵) → Q)
2826, 27anim12i 613 . . . . . . . 8 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑔QQ))
29 addclnq 10701 . . . . . . . 8 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
30 recidnq 10721 . . . . . . . 8 ((𝑔 +Q ) ∈ Q → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3128, 29, 303syl 18 . . . . . . 7 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3225, 31eqtrid 2790 . . . . . 6 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = 1Q)
3332oveq2d 7291 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = (𝑥 ·Q 1Q))
34 mulidnq 10719 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3533, 34sylan9eq 2798 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = 𝑥)
3624, 35eqtrid 2790 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = 𝑥)
3736eleq1d 2823 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵) ↔ 𝑥 ∈ (𝐴 +P 𝐵)))
3821, 37sylibd 238 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Qcnq 10608  1Qc1q 10609   +Q cplq 10611   ·Q cmq 10612  *Qcrq 10613   <Q cltq 10614  Pcnp 10615   +P cpp 10617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739
This theorem is referenced by:  addclpr  10774
  Copyright terms: Public domain W3C validator