MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem2 Structured version   Visualization version   GIF version

Theorem addclprlem2 10428
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem addclprlem2
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclprlem1 10427 . . . . 5 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
21adantlr 714 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
3 addclprlem1 10427 . . . . . 6 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q ( +Q 𝑔) → ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵))
4 addcomnq 10362 . . . . . . 7 (𝑔 +Q ) = ( +Q 𝑔)
54breq2i 5038 . . . . . 6 (𝑥 <Q (𝑔 +Q ) ↔ 𝑥 <Q ( +Q 𝑔))
64fveq2i 6648 . . . . . . . . 9 (*Q‘(𝑔 +Q )) = (*Q‘( +Q 𝑔))
76oveq2i 7146 . . . . . . . 8 (𝑥 ·Q (*Q‘(𝑔 +Q ))) = (𝑥 ·Q (*Q‘( +Q 𝑔)))
87oveq1i 7145 . . . . . . 7 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) = ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q )
98eleq1i 2880 . . . . . 6 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵 ↔ ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵)
103, 5, 93imtr4g 299 . . . . 5 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
1110adantll 713 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
122, 11jcad 516 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵)))
13 simpl 486 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)))
14 simpl 486 . . . . 5 ((𝐴P𝑔𝐴) → 𝐴P)
15 simpl 486 . . . . 5 ((𝐵P𝐵) → 𝐵P)
1614, 15anim12i 615 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝐴P𝐵P))
17 df-plp 10394 . . . . 5 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
18 addclnq 10356 . . . . 5 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
1917, 18genpprecl 10412 . . . 4 ((𝐴P𝐵P) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2013, 16, 193syl 18 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2112, 20syld 47 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
22 distrnq 10372 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ))
23 mulassnq 10370 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
2422, 23eqtr3i 2823 . . . 4 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
25 mulcomnq 10364 . . . . . . 7 ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q )))
26 elprnq 10402 . . . . . . . . 9 ((𝐴P𝑔𝐴) → 𝑔Q)
27 elprnq 10402 . . . . . . . . 9 ((𝐵P𝐵) → Q)
2826, 27anim12i 615 . . . . . . . 8 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑔QQ))
29 addclnq 10356 . . . . . . . 8 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
30 recidnq 10376 . . . . . . . 8 ((𝑔 +Q ) ∈ Q → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3128, 29, 303syl 18 . . . . . . 7 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3225, 31syl5eq 2845 . . . . . 6 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = 1Q)
3332oveq2d 7151 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = (𝑥 ·Q 1Q))
34 mulidnq 10374 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3533, 34sylan9eq 2853 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = 𝑥)
3624, 35syl5eq 2845 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = 𝑥)
3736eleq1d 2874 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵) ↔ 𝑥 ∈ (𝐴 +P 𝐵)))
3821, 37sylibd 242 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Qcnq 10263  1Qc1q 10264   +Q cplq 10266   ·Q cmq 10267  *Qcrq 10268   <Q cltq 10269  Pcnp 10270   +P cpp 10272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-rq 10328  df-ltnq 10329  df-np 10392  df-plp 10394
This theorem is referenced by:  addclpr  10429
  Copyright terms: Public domain W3C validator