MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem2 Structured version   Visualization version   GIF version

Theorem addclprlem2 11057
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem addclprlem2
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclprlem1 11056 . . . . 5 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
21adantlr 715 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
3 addclprlem1 11056 . . . . . 6 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q ( +Q 𝑔) → ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵))
4 addcomnq 10991 . . . . . . 7 (𝑔 +Q ) = ( +Q 𝑔)
54breq2i 5151 . . . . . 6 (𝑥 <Q (𝑔 +Q ) ↔ 𝑥 <Q ( +Q 𝑔))
64fveq2i 6909 . . . . . . . . 9 (*Q‘(𝑔 +Q )) = (*Q‘( +Q 𝑔))
76oveq2i 7442 . . . . . . . 8 (𝑥 ·Q (*Q‘(𝑔 +Q ))) = (𝑥 ·Q (*Q‘( +Q 𝑔)))
87oveq1i 7441 . . . . . . 7 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) = ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q )
98eleq1i 2832 . . . . . 6 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵 ↔ ((𝑥 ·Q (*Q‘( +Q 𝑔))) ·Q ) ∈ 𝐵)
103, 5, 93imtr4g 296 . . . . 5 (((𝐵P𝐵) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
1110adantll 714 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵))
122, 11jcad 512 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵)))
13 simpl 482 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)))
14 simpl 482 . . . . 5 ((𝐴P𝑔𝐴) → 𝐴P)
15 simpl 482 . . . . 5 ((𝐵P𝐵) → 𝐵P)
1614, 15anim12i 613 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝐴P𝐵P))
17 df-plp 11023 . . . . 5 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
18 addclnq 10985 . . . . 5 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
1917, 18genpprecl 11041 . . . 4 ((𝐴P𝐵P) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2013, 16, 193syl 18 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴 ∧ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ) ∈ 𝐵) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
2112, 20syld 47 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵)))
22 distrnq 11001 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q ))
23 mulassnq 10999 . . . . 5 ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q (𝑔 +Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
2422, 23eqtr3i 2767 . . . 4 (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )))
25 mulcomnq 10993 . . . . . . 7 ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q )))
26 elprnq 11031 . . . . . . . . 9 ((𝐴P𝑔𝐴) → 𝑔Q)
27 elprnq 11031 . . . . . . . . 9 ((𝐵P𝐵) → Q)
2826, 27anim12i 613 . . . . . . . 8 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑔QQ))
29 addclnq 10985 . . . . . . . 8 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
30 recidnq 11005 . . . . . . . 8 ((𝑔 +Q ) ∈ Q → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3128, 29, 303syl 18 . . . . . . 7 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑔 +Q ) ·Q (*Q‘(𝑔 +Q ))) = 1Q)
3225, 31eqtrid 2789 . . . . . 6 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q )) = 1Q)
3332oveq2d 7447 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = (𝑥 ·Q 1Q))
34 mulidnq 11003 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3533, 34sylan9eq 2797 . . . 4 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 ·Q ((*Q‘(𝑔 +Q )) ·Q (𝑔 +Q ))) = 𝑥)
3624, 35eqtrid 2789 . . 3 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) = 𝑥)
3736eleq1d 2826 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → ((((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) +Q ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q )) ∈ (𝐴 +P 𝐵) ↔ 𝑥 ∈ (𝐴 +P 𝐵)))
3821, 37sylibd 239 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → 𝑥 ∈ (𝐴 +P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Qcnq 10892  1Qc1q 10893   +Q cplq 10895   ·Q cmq 10896  *Qcrq 10897   <Q cltq 10898  Pcnp 10899   +P cpp 10901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-plp 11023
This theorem is referenced by:  addclpr  11058
  Copyright terms: Public domain W3C validator