![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpdm | Structured version Visualization version GIF version |
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpdm | ⊢ dom 𝐹 = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 10934 | . . . . . . . 8 ⊢ ((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ Q) | |
2 | elprnq 10934 | . . . . . . . 8 ⊢ ((𝑣 ∈ P ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ Q) | |
3 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
4 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦𝐺𝑧) → (𝑥 ∈ Q ↔ (𝑦𝐺𝑧) ∈ Q)) | |
5 | 3, 4 | syl5ibrcom 247 | . . . . . . . 8 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
6 | 1, 2, 5 | syl2an 597 | . . . . . . 7 ⊢ (((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) ∧ (𝑣 ∈ P ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
7 | 6 | an4s 659 | . . . . . 6 ⊢ (((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
8 | 7 | rexlimdvva 3206 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → (∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
9 | 8 | abssdv 4030 | . . . 4 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q) |
10 | nqex 10866 | . . . 4 ⊢ Q ∈ V | |
11 | ssexg 5285 | . . . 4 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q ∧ Q ∈ V) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) | |
12 | 9, 10, 11 | sylancl 587 | . . 3 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) |
13 | 12 | rgen2 3195 | . 2 ⊢ ∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V |
14 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
15 | 14 | fnmpo 8006 | . 2 ⊢ (∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P)) |
16 | fndm 6610 | . 2 ⊢ (𝐹 Fn (P × P) → dom 𝐹 = (P × P)) | |
17 | 13, 15, 16 | mp2b 10 | 1 ⊢ dom 𝐹 = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2714 ∀wral 3065 ∃wrex 3074 Vcvv 3448 ⊆ wss 3915 × cxp 5636 dom cdm 5638 Fn wfn 6496 (class class class)co 7362 ∈ cmpo 7364 Qcnq 10795 Pcnp 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fv 6509 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-ni 10815 df-nq 10855 df-np 10924 |
This theorem is referenced by: dmplp 10955 dmmp 10956 |
Copyright terms: Public domain | W3C validator |