Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > genpdm | Structured version Visualization version GIF version |
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpdm | ⊢ dom 𝐹 = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 10605 | . . . . . . . 8 ⊢ ((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ Q) | |
2 | elprnq 10605 | . . . . . . . 8 ⊢ ((𝑣 ∈ P ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ Q) | |
3 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
4 | eleq1 2825 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦𝐺𝑧) → (𝑥 ∈ Q ↔ (𝑦𝐺𝑧) ∈ Q)) | |
5 | 3, 4 | syl5ibrcom 250 | . . . . . . . 8 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
6 | 1, 2, 5 | syl2an 599 | . . . . . . 7 ⊢ (((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) ∧ (𝑣 ∈ P ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
7 | 6 | an4s 660 | . . . . . 6 ⊢ (((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
8 | 7 | rexlimdvva 3213 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → (∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
9 | 8 | abssdv 3982 | . . . 4 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q) |
10 | nqex 10537 | . . . 4 ⊢ Q ∈ V | |
11 | ssexg 5216 | . . . 4 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q ∧ Q ∈ V) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) | |
12 | 9, 10, 11 | sylancl 589 | . . 3 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) |
13 | 12 | rgen2 3124 | . 2 ⊢ ∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V |
14 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
15 | 14 | fnmpo 7839 | . 2 ⊢ (∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P)) |
16 | fndm 6481 | . 2 ⊢ (𝐹 Fn (P × P) → dom 𝐹 = (P × P)) | |
17 | 13, 15, 16 | mp2b 10 | 1 ⊢ dom 𝐹 = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 ∀wral 3061 ∃wrex 3062 Vcvv 3408 ⊆ wss 3866 × cxp 5549 dom cdm 5551 Fn wfn 6375 (class class class)co 7213 ∈ cmpo 7215 Qcnq 10466 Pcnp 10473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-ni 10486 df-nq 10526 df-np 10595 |
This theorem is referenced by: dmplp 10626 dmmp 10627 |
Copyright terms: Public domain | W3C validator |