![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpdm | Structured version Visualization version GIF version |
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpdm | ⊢ dom 𝐹 = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 11060 | . . . . . . . 8 ⊢ ((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ Q) | |
2 | elprnq 11060 | . . . . . . . 8 ⊢ ((𝑣 ∈ P ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ Q) | |
3 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
4 | eleq1 2832 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦𝐺𝑧) → (𝑥 ∈ Q ↔ (𝑦𝐺𝑧) ∈ Q)) | |
5 | 3, 4 | syl5ibrcom 247 | . . . . . . . 8 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
6 | 1, 2, 5 | syl2an 595 | . . . . . . 7 ⊢ (((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) ∧ (𝑣 ∈ P ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
7 | 6 | an4s 659 | . . . . . 6 ⊢ (((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
8 | 7 | rexlimdvva 3219 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → (∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
9 | 8 | abssdv 4091 | . . . 4 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q) |
10 | nqex 10992 | . . . 4 ⊢ Q ∈ V | |
11 | ssexg 5341 | . . . 4 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q ∧ Q ∈ V) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) | |
12 | 9, 10, 11 | sylancl 585 | . . 3 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) |
13 | 12 | rgen2 3205 | . 2 ⊢ ∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V |
14 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
15 | 14 | fnmpo 8110 | . 2 ⊢ (∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P)) |
16 | fndm 6682 | . 2 ⊢ (𝐹 Fn (P × P) → dom 𝐹 = (P × P)) | |
17 | 13, 15, 16 | mp2b 10 | 1 ⊢ dom 𝐹 = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 × cxp 5698 dom cdm 5700 Fn wfn 6568 (class class class)co 7448 ∈ cmpo 7450 Qcnq 10921 Pcnp 10928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-ni 10941 df-nq 10981 df-np 11050 |
This theorem is referenced by: dmplp 11081 dmmp 11082 |
Copyright terms: Public domain | W3C validator |