MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpdm Structured version   Visualization version   GIF version

Theorem genpdm 10888
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpdm dom 𝐹 = (P × P)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐺
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdm
StepHypRef Expression
1 elprnq 10877 . . . . . . . 8 ((𝑤P𝑦𝑤) → 𝑦Q)
2 elprnq 10877 . . . . . . . 8 ((𝑣P𝑧𝑣) → 𝑧Q)
3 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
4 eleq1 2819 . . . . . . . . 9 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
53, 4syl5ibrcom 247 . . . . . . . 8 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
61, 2, 5syl2an 596 . . . . . . 7 (((𝑤P𝑦𝑤) ∧ (𝑣P𝑧𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
76an4s 660 . . . . . 6 (((𝑤P𝑣P) ∧ (𝑦𝑤𝑧𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
87rexlimdvva 3189 . . . . 5 ((𝑤P𝑣P) → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
98abssdv 4014 . . . 4 ((𝑤P𝑣P) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
10 nqex 10809 . . . 4 Q ∈ V
11 ssexg 5256 . . . 4 (({𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V)
129, 10, 11sylancl 586 . . 3 ((𝑤P𝑣P) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V)
1312rgen2 3172 . 2 𝑤P𝑣P {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V
14 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
1514fnmpo 7996 . 2 (∀𝑤P𝑣P {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P))
16 fndm 6579 . 2 (𝐹 Fn (P × P) → dom 𝐹 = (P × P))
1713, 15, 16mp2b 10 1 dom 𝐹 = (P × P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  wss 3897   × cxp 5609  dom cdm 5611   Fn wfn 6471  (class class class)co 7341  cmpo 7343  Qcnq 10738  Pcnp 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-ni 10758  df-nq 10798  df-np 10867
This theorem is referenced by:  dmplp  10898  dmmp  10899
  Copyright terms: Public domain W3C validator