Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > genpdm | Structured version Visualization version GIF version |
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
Ref | Expression |
---|---|
genpdm | ⊢ dom 𝐹 = (P × P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 10747 | . . . . . . . 8 ⊢ ((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ Q) | |
2 | elprnq 10747 | . . . . . . . 8 ⊢ ((𝑣 ∈ P ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ Q) | |
3 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
4 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦𝐺𝑧) → (𝑥 ∈ Q ↔ (𝑦𝐺𝑧) ∈ Q)) | |
5 | 3, 4 | syl5ibrcom 246 | . . . . . . . 8 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
6 | 1, 2, 5 | syl2an 596 | . . . . . . 7 ⊢ (((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) ∧ (𝑣 ∈ P ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
7 | 6 | an4s 657 | . . . . . 6 ⊢ (((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
8 | 7 | rexlimdvva 3223 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → (∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
9 | 8 | abssdv 4002 | . . . 4 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q) |
10 | nqex 10679 | . . . 4 ⊢ Q ∈ V | |
11 | ssexg 5247 | . . . 4 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q ∧ Q ∈ V) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) | |
12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) |
13 | 12 | rgen2 3120 | . 2 ⊢ ∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V |
14 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
15 | 14 | fnmpo 7909 | . 2 ⊢ (∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P)) |
16 | fndm 6536 | . 2 ⊢ (𝐹 Fn (P × P) → dom 𝐹 = (P × P)) | |
17 | 13, 15, 16 | mp2b 10 | 1 ⊢ dom 𝐹 = (P × P) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ⊆ wss 3887 × cxp 5587 dom cdm 5589 Fn wfn 6428 (class class class)co 7275 ∈ cmpo 7277 Qcnq 10608 Pcnp 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-ni 10628 df-nq 10668 df-np 10737 |
This theorem is referenced by: dmplp 10768 dmmp 10769 |
Copyright terms: Public domain | W3C validator |