MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpdm Structured version   Visualization version   GIF version

Theorem genpdm 10997
Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpdm dom 𝐹 = (P × P)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐺
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpdm
StepHypRef Expression
1 elprnq 10986 . . . . . . . 8 ((𝑤P𝑦𝑤) → 𝑦Q)
2 elprnq 10986 . . . . . . . 8 ((𝑣P𝑧𝑣) → 𝑧Q)
3 genp.2 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
4 eleq1 2822 . . . . . . . . 9 (𝑥 = (𝑦𝐺𝑧) → (𝑥Q ↔ (𝑦𝐺𝑧) ∈ Q))
53, 4syl5ibrcom 246 . . . . . . . 8 ((𝑦Q𝑧Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
61, 2, 5syl2an 597 . . . . . . 7 (((𝑤P𝑦𝑤) ∧ (𝑣P𝑧𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
76an4s 659 . . . . . 6 (((𝑤P𝑣P) ∧ (𝑦𝑤𝑧𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
87rexlimdvva 3212 . . . . 5 ((𝑤P𝑣P) → (∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥Q))
98abssdv 4066 . . . 4 ((𝑤P𝑣P) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q)
10 nqex 10918 . . . 4 Q ∈ V
11 ssexg 5324 . . . 4 (({𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ QQ ∈ V) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V)
129, 10, 11sylancl 587 . . 3 ((𝑤P𝑣P) → {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V)
1312rgen2 3198 . 2 𝑤P𝑣P {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V
14 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
1514fnmpo 8055 . 2 (∀𝑤P𝑣P {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P))
16 fndm 6653 . 2 (𝐹 Fn (P × P) → dom 𝐹 = (P × P))
1713, 15, 16mp2b 10 1 dom 𝐹 = (P × P)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  Vcvv 3475  wss 3949   × cxp 5675  dom cdm 5677   Fn wfn 6539  (class class class)co 7409  cmpo 7411  Qcnq 10847  Pcnp 10854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-ni 10867  df-nq 10907  df-np 10976
This theorem is referenced by:  dmplp  11007  dmmp  11008
  Copyright terms: Public domain W3C validator