| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > genpdm | Structured version Visualization version GIF version | ||
| Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
| genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
| Ref | Expression |
|---|---|
| genpdm | ⊢ dom 𝐹 = (P × P) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 11005 | . . . . . . . 8 ⊢ ((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ Q) | |
| 2 | elprnq 11005 | . . . . . . . 8 ⊢ ((𝑣 ∈ P ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ Q) | |
| 3 | genp.2 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
| 4 | eleq1 2822 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦𝐺𝑧) → (𝑥 ∈ Q ↔ (𝑦𝐺𝑧) ∈ Q)) | |
| 5 | 3, 4 | syl5ibrcom 247 | . . . . . . . 8 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
| 6 | 1, 2, 5 | syl2an 596 | . . . . . . 7 ⊢ (((𝑤 ∈ P ∧ 𝑦 ∈ 𝑤) ∧ (𝑣 ∈ P ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
| 7 | 6 | an4s 660 | . . . . . 6 ⊢ (((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑦 ∈ 𝑤 ∧ 𝑧 ∈ 𝑣)) → (𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
| 8 | 7 | rexlimdvva 3198 | . . . . 5 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → (∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧) → 𝑥 ∈ Q)) |
| 9 | 8 | abssdv 4043 | . . . 4 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q) |
| 10 | nqex 10937 | . . . 4 ⊢ Q ∈ V | |
| 11 | ssexg 5293 | . . . 4 ⊢ (({𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ⊆ Q ∧ Q ∈ V) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) | |
| 12 | 9, 10, 11 | sylancl 586 | . . 3 ⊢ ((𝑤 ∈ P ∧ 𝑣 ∈ P) → {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V) |
| 13 | 12 | rgen2 3184 | . 2 ⊢ ∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V |
| 14 | genp.1 | . . 3 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
| 15 | 14 | fnmpo 8068 | . 2 ⊢ (∀𝑤 ∈ P ∀𝑣 ∈ P {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)} ∈ V → 𝐹 Fn (P × P)) |
| 16 | fndm 6641 | . 2 ⊢ (𝐹 Fn (P × P) → dom 𝐹 = (P × P)) | |
| 17 | 13, 15, 16 | mp2b 10 | 1 ⊢ dom 𝐹 = (P × P) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 × cxp 5652 dom cdm 5654 Fn wfn 6526 (class class class)co 7405 ∈ cmpo 7407 Qcnq 10866 Pcnp 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-ni 10886 df-nq 10926 df-np 10995 |
| This theorem is referenced by: dmplp 11026 dmmp 11027 |
| Copyright terms: Public domain | W3C validator |