| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version | ||
| Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpti.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmptg 5914 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ↦ cmpt 5183 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: fliftel 7266 oarec 8503 unfilem1 9230 elrest 17366 psgneldm2 19418 psgnfitr 19431 iscyggen2 19795 iscyg3 19800 cycsubgcyg 19815 eldprd 19920 leordtval2 23132 iocpnfordt 23135 icomnfordt 23136 lecldbas 23139 tsmsxplem1 24073 minveclem2 25359 lhop2 25953 taylthlem2 26315 taylthlem2OLD 26316 fsumvma 27157 dchrptlem2 27209 2sqlem1 27361 dchrisum0fno1 27455 minvecolem2 30854 swrdrn3 32927 nsgqusf1olem1 33377 nsgqusf1olem3 33379 rspectopn 33850 zarclsun 33853 zarcls 33857 gsumesum 34042 esumlub 34043 esumcst 34046 esumpcvgval 34061 esumgect 34073 esum2d 34076 sigapildsys 34145 sxbrsigalem2 34270 omssubaddlem 34283 omssubadd 34284 eulerpartgbij 34356 actfunsnf1o 34588 actfunsnrndisj 34589 reprsuc 34599 breprexplema 34614 bnj1366 34812 msubco 35511 msubvrs 35540 fin2so 37594 poimirlem17 37624 poimirlem20 37627 cntotbnd 37783 islsat 38977 |
| Copyright terms: Public domain | W3C validator |