| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version | ||
| Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpti.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmptg 5925 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ↦ cmpt 5188 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: fliftel 7284 oarec 8526 unfilem1 9254 elrest 17390 psgneldm2 19434 psgnfitr 19447 iscyggen2 19811 iscyg3 19816 cycsubgcyg 19831 eldprd 19936 leordtval2 23099 iocpnfordt 23102 icomnfordt 23103 lecldbas 23106 tsmsxplem1 24040 minveclem2 25326 lhop2 25920 taylthlem2 26282 taylthlem2OLD 26283 fsumvma 27124 dchrptlem2 27176 2sqlem1 27328 dchrisum0fno1 27422 minvecolem2 30804 swrdrn3 32877 nsgqusf1olem1 33384 nsgqusf1olem3 33386 rspectopn 33857 zarclsun 33860 zarcls 33864 gsumesum 34049 esumlub 34050 esumcst 34053 esumpcvgval 34068 esumgect 34080 esum2d 34083 sigapildsys 34152 sxbrsigalem2 34277 omssubaddlem 34290 omssubadd 34291 eulerpartgbij 34363 actfunsnf1o 34595 actfunsnrndisj 34596 reprsuc 34606 breprexplema 34621 bnj1366 34819 msubco 35518 msubvrs 35547 fin2so 37601 poimirlem17 37631 poimirlem20 37634 cntotbnd 37790 islsat 38984 |
| Copyright terms: Public domain | W3C validator |