| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version | ||
| Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpti.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmptg 5928 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: fliftel 7287 oarec 8529 unfilem1 9261 elrest 17397 psgneldm2 19441 psgnfitr 19454 iscyggen2 19818 iscyg3 19823 cycsubgcyg 19838 eldprd 19943 leordtval2 23106 iocpnfordt 23109 icomnfordt 23110 lecldbas 23113 tsmsxplem1 24047 minveclem2 25333 lhop2 25927 taylthlem2 26289 taylthlem2OLD 26290 fsumvma 27131 dchrptlem2 27183 2sqlem1 27335 dchrisum0fno1 27429 minvecolem2 30811 swrdrn3 32884 nsgqusf1olem1 33391 nsgqusf1olem3 33393 rspectopn 33864 zarclsun 33867 zarcls 33871 gsumesum 34056 esumlub 34057 esumcst 34060 esumpcvgval 34075 esumgect 34087 esum2d 34090 sigapildsys 34159 sxbrsigalem2 34284 omssubaddlem 34297 omssubadd 34298 eulerpartgbij 34370 actfunsnf1o 34602 actfunsnrndisj 34603 reprsuc 34613 breprexplema 34628 bnj1366 34826 msubco 35525 msubvrs 35554 fin2so 37608 poimirlem17 37638 poimirlem20 37641 cntotbnd 37797 islsat 38991 |
| Copyright terms: Public domain | W3C validator |