![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpti.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3093 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmptg 5671 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1508 ∈ wcel 2051 ∀wral 3081 ∃wrex 3082 Vcvv 3408 ↦ cmpt 5004 ran crn 5404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-mpt 5005 df-cnv 5411 df-dm 5413 df-rn 5414 |
This theorem is referenced by: fliftel 6883 oarec 7987 unfilem1 8575 pwfilem 8611 elrest 16555 psgneldm2 18406 psgnfitr 18419 iscyggen2 18768 iscyg3 18773 cycsubgcyg 18787 eldprd 18888 leordtval2 21539 iocpnfordt 21542 icomnfordt 21543 lecldbas 21546 tsmsxplem1 22479 minveclem2 23747 lhop2 24330 taylthlem2 24680 fsumvma 25506 dchrptlem2 25558 2sqlem1 25710 dchrisum0fno1 25804 minvecolem2 28445 gsumesum 30994 esumlub 30995 esumcst 30998 esumpcvgval 31013 esumgect 31025 esum2d 31028 sigapildsys 31098 sxbrsigalem2 31221 omssubaddlem 31234 omssubadd 31235 eulerpartgbij 31307 actfunsnf1o 31555 actfunsnrndisj 31556 reprsuc 31566 breprexplema 31581 bnj1366 31781 msubco 32335 msubvrs 32364 fin2so 34357 poimirlem17 34387 poimirlem20 34390 cntotbnd 34553 islsat 35609 |
Copyright terms: Public domain | W3C validator |