Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpti.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3075 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmptg 5857 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: fliftel 7160 oarec 8355 unfilem1 9008 pwfilemOLD 9043 elrest 17055 psgneldm2 19027 psgnfitr 19040 iscyggen2 19396 iscyg3 19401 cycsubgcyg 19417 eldprd 19522 leordtval2 22271 iocpnfordt 22274 icomnfordt 22275 lecldbas 22278 tsmsxplem1 23212 minveclem2 24495 lhop2 25084 taylthlem2 25438 fsumvma 26266 dchrptlem2 26318 2sqlem1 26470 dchrisum0fno1 26564 minvecolem2 29138 swrdrn3 31129 nsgqusf1olem1 31500 nsgqusf1olem3 31502 rspectopn 31719 zarclsun 31722 zarcls 31726 gsumesum 31927 esumlub 31928 esumcst 31931 esumpcvgval 31946 esumgect 31958 esum2d 31961 sigapildsys 32030 sxbrsigalem2 32153 omssubaddlem 32166 omssubadd 32167 eulerpartgbij 32239 actfunsnf1o 32484 actfunsnrndisj 32485 reprsuc 32495 breprexplema 32510 bnj1366 32709 msubco 33393 msubvrs 33422 fin2so 35691 poimirlem17 35721 poimirlem20 35724 cntotbnd 35881 islsat 36932 |
Copyright terms: Public domain | W3C validator |