Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpti.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3076 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmptg 5868 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: fliftel 7180 oarec 8393 unfilem1 9078 pwfilemOLD 9113 elrest 17138 psgneldm2 19112 psgnfitr 19125 iscyggen2 19481 iscyg3 19486 cycsubgcyg 19502 eldprd 19607 leordtval2 22363 iocpnfordt 22366 icomnfordt 22367 lecldbas 22370 tsmsxplem1 23304 minveclem2 24590 lhop2 25179 taylthlem2 25533 fsumvma 26361 dchrptlem2 26413 2sqlem1 26565 dchrisum0fno1 26659 minvecolem2 29237 swrdrn3 31227 nsgqusf1olem1 31598 nsgqusf1olem3 31600 rspectopn 31817 zarclsun 31820 zarcls 31824 gsumesum 32027 esumlub 32028 esumcst 32031 esumpcvgval 32046 esumgect 32058 esum2d 32061 sigapildsys 32130 sxbrsigalem2 32253 omssubaddlem 32266 omssubadd 32267 eulerpartgbij 32339 actfunsnf1o 32584 actfunsnrndisj 32585 reprsuc 32595 breprexplema 32610 bnj1366 32809 msubco 33493 msubvrs 33522 fin2so 35764 poimirlem17 35794 poimirlem20 35797 cntotbnd 35954 islsat 37005 |
Copyright terms: Public domain | W3C validator |