![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpti.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmptg 5975 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 ↦ cmpt 5231 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: fliftel 7329 oarec 8599 unfilem1 9341 elrest 17474 psgneldm2 19537 psgnfitr 19550 iscyggen2 19914 iscyg3 19919 cycsubgcyg 19934 eldprd 20039 leordtval2 23236 iocpnfordt 23239 icomnfordt 23240 lecldbas 23243 tsmsxplem1 24177 minveclem2 25474 lhop2 26069 taylthlem2 26431 taylthlem2OLD 26432 fsumvma 27272 dchrptlem2 27324 2sqlem1 27476 dchrisum0fno1 27570 minvecolem2 30904 swrdrn3 32925 nsgqusf1olem1 33421 nsgqusf1olem3 33423 rspectopn 33828 zarclsun 33831 zarcls 33835 gsumesum 34040 esumlub 34041 esumcst 34044 esumpcvgval 34059 esumgect 34071 esum2d 34074 sigapildsys 34143 sxbrsigalem2 34268 omssubaddlem 34281 omssubadd 34282 eulerpartgbij 34354 actfunsnf1o 34598 actfunsnrndisj 34599 reprsuc 34609 breprexplema 34624 bnj1366 34822 msubco 35516 msubvrs 35545 fin2so 37594 poimirlem17 37624 poimirlem20 37627 cntotbnd 37783 islsat 38973 |
Copyright terms: Public domain | W3C validator |