| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version | ||
| Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpti.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmptg 5900 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ↦ cmpt 5170 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: fliftel 7243 oarec 8477 unfilem1 9189 elrest 17331 psgneldm2 19416 psgnfitr 19429 iscyggen2 19793 iscyg3 19798 cycsubgcyg 19813 eldprd 19918 leordtval2 23127 iocpnfordt 23130 icomnfordt 23131 lecldbas 23134 tsmsxplem1 24068 minveclem2 25353 lhop2 25947 taylthlem2 26309 taylthlem2OLD 26310 fsumvma 27151 dchrptlem2 27203 2sqlem1 27355 dchrisum0fno1 27449 minvecolem2 30855 swrdrn3 32936 nsgqusf1olem1 33378 nsgqusf1olem3 33380 rspectopn 33880 zarclsun 33883 zarcls 33887 gsumesum 34072 esumlub 34073 esumcst 34076 esumpcvgval 34091 esumgect 34103 esum2d 34106 sigapildsys 34175 sxbrsigalem2 34299 omssubaddlem 34312 omssubadd 34313 eulerpartgbij 34385 actfunsnf1o 34617 actfunsnrndisj 34618 reprsuc 34628 breprexplema 34643 bnj1366 34841 msubco 35575 msubvrs 35604 fin2so 37646 poimirlem17 37676 poimirlem20 37679 cntotbnd 37835 islsat 39089 |
| Copyright terms: Public domain | W3C validator |