| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version | ||
| Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpti.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmptg 5903 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3436 ↦ cmpt 5173 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: fliftel 7246 oarec 8480 unfilem1 9194 elrest 17331 psgneldm2 19383 psgnfitr 19396 iscyggen2 19760 iscyg3 19765 cycsubgcyg 19780 eldprd 19885 leordtval2 23097 iocpnfordt 23100 icomnfordt 23101 lecldbas 23104 tsmsxplem1 24038 minveclem2 25324 lhop2 25918 taylthlem2 26280 taylthlem2OLD 26281 fsumvma 27122 dchrptlem2 27174 2sqlem1 27326 dchrisum0fno1 27420 minvecolem2 30819 swrdrn3 32898 nsgqusf1olem1 33351 nsgqusf1olem3 33353 rspectopn 33840 zarclsun 33843 zarcls 33847 gsumesum 34032 esumlub 34033 esumcst 34036 esumpcvgval 34051 esumgect 34063 esum2d 34066 sigapildsys 34135 sxbrsigalem2 34260 omssubaddlem 34273 omssubadd 34274 eulerpartgbij 34346 actfunsnf1o 34578 actfunsnrndisj 34579 reprsuc 34589 breprexplema 34604 bnj1366 34802 msubco 35514 msubvrs 35543 fin2so 37597 poimirlem17 37627 poimirlem20 37630 cntotbnd 37786 islsat 38980 |
| Copyright terms: Public domain | W3C validator |