| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version | ||
| Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpti.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | rgenw 3055 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | elrnmptg 5941 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ↦ cmpt 5201 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: fliftel 7302 oarec 8574 unfilem1 9315 elrest 17441 psgneldm2 19485 psgnfitr 19498 iscyggen2 19862 iscyg3 19867 cycsubgcyg 19882 eldprd 19987 leordtval2 23150 iocpnfordt 23153 icomnfordt 23154 lecldbas 23157 tsmsxplem1 24091 minveclem2 25378 lhop2 25972 taylthlem2 26334 taylthlem2OLD 26335 fsumvma 27176 dchrptlem2 27228 2sqlem1 27380 dchrisum0fno1 27474 minvecolem2 30856 swrdrn3 32931 nsgqusf1olem1 33428 nsgqusf1olem3 33430 rspectopn 33898 zarclsun 33901 zarcls 33905 gsumesum 34090 esumlub 34091 esumcst 34094 esumpcvgval 34109 esumgect 34121 esum2d 34124 sigapildsys 34193 sxbrsigalem2 34318 omssubaddlem 34331 omssubadd 34332 eulerpartgbij 34404 actfunsnf1o 34636 actfunsnrndisj 34637 reprsuc 34647 breprexplema 34662 bnj1366 34860 msubco 35553 msubvrs 35582 fin2so 37631 poimirlem17 37661 poimirlem20 37664 cntotbnd 37820 islsat 39009 |
| Copyright terms: Public domain | W3C validator |