MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpti Structured version   Visualization version   GIF version

Theorem elrnmpti 5672
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpti.2 𝐵 ∈ V
Assertion
Ref Expression
elrnmpti (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem elrnmpti
StepHypRef Expression
1 elrnmpti.2 . . 3 𝐵 ∈ V
21rgenw 3093 . 2 𝑥𝐴 𝐵 ∈ V
3 rnmpt.1 . . 3 𝐹 = (𝑥𝐴𝐵)
43elrnmptg 5671 . 2 (∀𝑥𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
52, 4ax-mp 5 1 (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1508  wcel 2051  wral 3081  wrex 3082  Vcvv 3408  cmpt 5004  ran crn 5404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926  df-opab 4988  df-mpt 5005  df-cnv 5411  df-dm 5413  df-rn 5414
This theorem is referenced by:  fliftel  6883  oarec  7987  unfilem1  8575  pwfilem  8611  elrest  16555  psgneldm2  18406  psgnfitr  18419  iscyggen2  18768  iscyg3  18773  cycsubgcyg  18787  eldprd  18888  leordtval2  21539  iocpnfordt  21542  icomnfordt  21543  lecldbas  21546  tsmsxplem1  22479  minveclem2  23747  lhop2  24330  taylthlem2  24680  fsumvma  25506  dchrptlem2  25558  2sqlem1  25710  dchrisum0fno1  25804  minvecolem2  28445  gsumesum  30994  esumlub  30995  esumcst  30998  esumpcvgval  31013  esumgect  31025  esum2d  31028  sigapildsys  31098  sxbrsigalem2  31221  omssubaddlem  31234  omssubadd  31235  eulerpartgbij  31307  actfunsnf1o  31555  actfunsnrndisj  31556  reprsuc  31566  breprexplema  31581  bnj1366  31781  msubco  32335  msubvrs  32364  fin2so  34357  poimirlem17  34387  poimirlem20  34390  cntotbnd  34553  islsat  35609
  Copyright terms: Public domain W3C validator