![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpti.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3071 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmptg 5984 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: fliftel 7345 oarec 8618 unfilem1 9371 pwfilemOLD 9416 elrest 17487 psgneldm2 19546 psgnfitr 19559 iscyggen2 19923 iscyg3 19928 cycsubgcyg 19943 eldprd 20048 leordtval2 23241 iocpnfordt 23244 icomnfordt 23245 lecldbas 23248 tsmsxplem1 24182 minveclem2 25479 lhop2 26074 taylthlem2 26434 taylthlem2OLD 26435 fsumvma 27275 dchrptlem2 27327 2sqlem1 27479 dchrisum0fno1 27573 minvecolem2 30907 swrdrn3 32922 nsgqusf1olem1 33406 nsgqusf1olem3 33408 rspectopn 33813 zarclsun 33816 zarcls 33820 gsumesum 34023 esumlub 34024 esumcst 34027 esumpcvgval 34042 esumgect 34054 esum2d 34057 sigapildsys 34126 sxbrsigalem2 34251 omssubaddlem 34264 omssubadd 34265 eulerpartgbij 34337 actfunsnf1o 34581 actfunsnrndisj 34582 reprsuc 34592 breprexplema 34607 bnj1366 34805 msubco 35499 msubvrs 35528 fin2so 37567 poimirlem17 37597 poimirlem20 37600 cntotbnd 37756 islsat 38947 |
Copyright terms: Public domain | W3C validator |