Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem1 Structured version   Visualization version   GIF version

Theorem subfacp1lem1 33041
Description: Lemma for subfacp1 33048. The set 𝐾 together with {1, 𝑀} partitions the set 1...(𝑁 + 1). (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
Assertion
Ref Expression
subfacp1lem1 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝑀(𝑛)

Proof of Theorem subfacp1lem1
StepHypRef Expression
1 disj 4378 . . . 4 ((𝐾 ∩ {1, 𝑀}) = ∅ ↔ ∀𝑥𝐾 ¬ 𝑥 ∈ {1, 𝑀})
2 eldifi 4057 . . . . . . . . 9 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ∈ (2...(𝑁 + 1)))
3 elfzle1 13188 . . . . . . . . 9 (𝑥 ∈ (2...(𝑁 + 1)) → 2 ≤ 𝑥)
4 1lt2 12074 . . . . . . . . . . . 12 1 < 2
5 1re 10906 . . . . . . . . . . . . 13 1 ∈ ℝ
6 2re 11977 . . . . . . . . . . . . 13 2 ∈ ℝ
75, 6ltnlei 11026 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
84, 7mpbi 229 . . . . . . . . . . 11 ¬ 2 ≤ 1
9 breq2 5074 . . . . . . . . . . 11 (𝑥 = 1 → (2 ≤ 𝑥 ↔ 2 ≤ 1))
108, 9mtbiri 326 . . . . . . . . . 10 (𝑥 = 1 → ¬ 2 ≤ 𝑥)
1110necon2ai 2972 . . . . . . . . 9 (2 ≤ 𝑥𝑥 ≠ 1)
122, 3, 113syl 18 . . . . . . . 8 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ≠ 1)
13 eldifsni 4720 . . . . . . . 8 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥𝑀)
1412, 13jca 511 . . . . . . 7 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → (𝑥 ≠ 1 ∧ 𝑥𝑀))
15 subfacp1lem1.k . . . . . . 7 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
1614, 15eleq2s 2857 . . . . . 6 (𝑥𝐾 → (𝑥 ≠ 1 ∧ 𝑥𝑀))
17 neanior 3036 . . . . . 6 ((𝑥 ≠ 1 ∧ 𝑥𝑀) ↔ ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀))
1816, 17sylib 217 . . . . 5 (𝑥𝐾 → ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀))
19 vex 3426 . . . . . 6 𝑥 ∈ V
2019elpr 4581 . . . . 5 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
2118, 20sylnibr 328 . . . 4 (𝑥𝐾 → ¬ 𝑥 ∈ {1, 𝑀})
221, 21mprgbir 3078 . . 3 (𝐾 ∩ {1, 𝑀}) = ∅
2322a1i 11 . 2 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
24 uncom 4083 . . . 4 ({1} ∪ (𝐾 ∪ {𝑀})) = ((𝐾 ∪ {𝑀}) ∪ {1})
25 1z 12280 . . . . . 6 1 ∈ ℤ
26 fzsn 13227 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
2725, 26ax-mp 5 . . . . 5 (1...1) = {1}
2815uneq1i 4089 . . . . . 6 (𝐾 ∪ {𝑀}) = (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀})
29 undif1 4406 . . . . . 6 (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀}) = ((2...(𝑁 + 1)) ∪ {𝑀})
3028, 29eqtr2i 2767 . . . . 5 ((2...(𝑁 + 1)) ∪ {𝑀}) = (𝐾 ∪ {𝑀})
3127, 30uneq12i 4091 . . . 4 ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = ({1} ∪ (𝐾 ∪ {𝑀}))
32 df-pr 4561 . . . . . . 7 {1, 𝑀} = ({1} ∪ {𝑀})
3332equncomi 4085 . . . . . 6 {1, 𝑀} = ({𝑀} ∪ {1})
3433uneq2i 4090 . . . . 5 (𝐾 ∪ {1, 𝑀}) = (𝐾 ∪ ({𝑀} ∪ {1}))
35 unass 4096 . . . . 5 ((𝐾 ∪ {𝑀}) ∪ {1}) = (𝐾 ∪ ({𝑀} ∪ {1}))
3634, 35eqtr4i 2769 . . . 4 (𝐾 ∪ {1, 𝑀}) = ((𝐾 ∪ {𝑀}) ∪ {1})
3724, 31, 363eqtr4i 2776 . . 3 ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = (𝐾 ∪ {1, 𝑀})
38 subfacp1lem1.m . . . . . . . 8 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
3938snssd 4739 . . . . . . 7 (𝜑 → {𝑀} ⊆ (2...(𝑁 + 1)))
40 ssequn2 4113 . . . . . . 7 ({𝑀} ⊆ (2...(𝑁 + 1)) ↔ ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1)))
4139, 40sylib 217 . . . . . 6 (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1)))
42 df-2 11966 . . . . . . 7 2 = (1 + 1)
4342oveq1i 7265 . . . . . 6 (2...(𝑁 + 1)) = ((1 + 1)...(𝑁 + 1))
4441, 43eqtrdi 2795 . . . . 5 (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = ((1 + 1)...(𝑁 + 1)))
4544uneq2d 4093 . . . 4 (𝜑 → ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
46 subfacp1lem1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4746peano2nnd 11920 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ)
48 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
4947, 48eleqtrdi 2849 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
50 eluzfz1 13192 . . . . 5 ((𝑁 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 + 1)))
51 fzsplit 13211 . . . . 5 (1 ∈ (1...(𝑁 + 1)) → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
5249, 50, 513syl 18 . . . 4 (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
5345, 52eqtr4d 2781 . . 3 (𝜑 → ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = (1...(𝑁 + 1)))
5437, 53eqtr3id 2793 . 2 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
5542oveq2i 7266 . . 3 ((𝑁 + 1) − 2) = ((𝑁 + 1) − (1 + 1))
56 fzfi 13620 . . . . . . . . 9 (2...(𝑁 + 1)) ∈ Fin
57 diffi 8979 . . . . . . . . 9 ((2...(𝑁 + 1)) ∈ Fin → ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin)
5856, 57ax-mp 5 . . . . . . . 8 ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin
5915, 58eqeltri 2835 . . . . . . 7 𝐾 ∈ Fin
60 prfi 9019 . . . . . . 7 {1, 𝑀} ∈ Fin
61 hashun 14025 . . . . . . 7 ((𝐾 ∈ Fin ∧ {1, 𝑀} ∈ Fin ∧ (𝐾 ∩ {1, 𝑀}) = ∅) → (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀})))
6259, 60, 22, 61mp3an 1459 . . . . . 6 (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀}))
6354fveq2d 6760 . . . . . 6 (𝜑 → (♯‘(𝐾 ∪ {1, 𝑀})) = (♯‘(1...(𝑁 + 1))))
64 neeq1 3005 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥 ≠ 1 ↔ 𝑀 ≠ 1))
653, 11syl 17 . . . . . . . . . . 11 (𝑥 ∈ (2...(𝑁 + 1)) → 𝑥 ≠ 1)
6664, 65vtoclga 3503 . . . . . . . . . 10 (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ≠ 1)
6738, 66syl 17 . . . . . . . . 9 (𝜑𝑀 ≠ 1)
6867necomd 2998 . . . . . . . 8 (𝜑 → 1 ≠ 𝑀)
69 1ex 10902 . . . . . . . . 9 1 ∈ V
70 subfacp1lem1.x . . . . . . . . 9 𝑀 ∈ V
71 hashprg 14038 . . . . . . . . 9 ((1 ∈ V ∧ 𝑀 ∈ V) → (1 ≠ 𝑀 ↔ (♯‘{1, 𝑀}) = 2))
7269, 70, 71mp2an 688 . . . . . . . 8 (1 ≠ 𝑀 ↔ (♯‘{1, 𝑀}) = 2)
7368, 72sylib 217 . . . . . . 7 (𝜑 → (♯‘{1, 𝑀}) = 2)
7473oveq2d 7271 . . . . . 6 (𝜑 → ((♯‘𝐾) + (♯‘{1, 𝑀})) = ((♯‘𝐾) + 2))
7562, 63, 743eqtr3a 2803 . . . . 5 (𝜑 → (♯‘(1...(𝑁 + 1))) = ((♯‘𝐾) + 2))
7647nnnn0d 12223 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
77 hashfz1 13988 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
7876, 77syl 17 . . . . 5 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
7975, 78eqtr3d 2780 . . . 4 (𝜑 → ((♯‘𝐾) + 2) = (𝑁 + 1))
8047nncnd 11919 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℂ)
81 2cnd 11981 . . . . 5 (𝜑 → 2 ∈ ℂ)
82 hashcl 13999 . . . . . . . 8 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
8359, 82ax-mp 5 . . . . . . 7 (♯‘𝐾) ∈ ℕ0
8483nn0cni 12175 . . . . . 6 (♯‘𝐾) ∈ ℂ
8584a1i 11 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℂ)
8680, 81, 85subadd2d 11281 . . . 4 (𝜑 → (((𝑁 + 1) − 2) = (♯‘𝐾) ↔ ((♯‘𝐾) + 2) = (𝑁 + 1)))
8779, 86mpbird 256 . . 3 (𝜑 → ((𝑁 + 1) − 2) = (♯‘𝐾))
8846nncnd 11919 . . . 4 (𝜑𝑁 ∈ ℂ)
89 1cnd 10901 . . . 4 (𝜑 → 1 ∈ ℂ)
9088, 89, 89pnpcan2d 11300 . . 3 (𝜑 → ((𝑁 + 1) − (1 + 1)) = (𝑁 − 1))
9155, 87, 903eqtr3a 2803 . 2 (𝜑 → (♯‘𝐾) = (𝑁 − 1))
9223, 54, 913jca 1126 1 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  subfacp1lem2a  33042  subfacp1lem3  33044  subfacp1lem4  33045
  Copyright terms: Public domain W3C validator