Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem1 Structured version   Visualization version   GIF version

Theorem subfacp1lem1 35164
Description: Lemma for subfacp1 35171. The set 𝐾 together with {1, 𝑀} partitions the set 1...(𝑁 + 1). (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
Assertion
Ref Expression
subfacp1lem1 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝑀(𝑛)

Proof of Theorem subfacp1lem1
StepHypRef Expression
1 disj 4456 . . . 4 ((𝐾 ∩ {1, 𝑀}) = ∅ ↔ ∀𝑥𝐾 ¬ 𝑥 ∈ {1, 𝑀})
2 eldifi 4141 . . . . . . . . 9 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ∈ (2...(𝑁 + 1)))
3 elfzle1 13564 . . . . . . . . 9 (𝑥 ∈ (2...(𝑁 + 1)) → 2 ≤ 𝑥)
4 1lt2 12435 . . . . . . . . . . . 12 1 < 2
5 1re 11259 . . . . . . . . . . . . 13 1 ∈ ℝ
6 2re 12338 . . . . . . . . . . . . 13 2 ∈ ℝ
75, 6ltnlei 11380 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
84, 7mpbi 230 . . . . . . . . . . 11 ¬ 2 ≤ 1
9 breq2 5152 . . . . . . . . . . 11 (𝑥 = 1 → (2 ≤ 𝑥 ↔ 2 ≤ 1))
108, 9mtbiri 327 . . . . . . . . . 10 (𝑥 = 1 → ¬ 2 ≤ 𝑥)
1110necon2ai 2968 . . . . . . . . 9 (2 ≤ 𝑥𝑥 ≠ 1)
122, 3, 113syl 18 . . . . . . . 8 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ≠ 1)
13 eldifsni 4795 . . . . . . . 8 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥𝑀)
1412, 13jca 511 . . . . . . 7 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → (𝑥 ≠ 1 ∧ 𝑥𝑀))
15 subfacp1lem1.k . . . . . . 7 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
1614, 15eleq2s 2857 . . . . . 6 (𝑥𝐾 → (𝑥 ≠ 1 ∧ 𝑥𝑀))
17 neanior 3033 . . . . . 6 ((𝑥 ≠ 1 ∧ 𝑥𝑀) ↔ ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀))
1816, 17sylib 218 . . . . 5 (𝑥𝐾 → ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀))
19 vex 3482 . . . . . 6 𝑥 ∈ V
2019elpr 4655 . . . . 5 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
2118, 20sylnibr 329 . . . 4 (𝑥𝐾 → ¬ 𝑥 ∈ {1, 𝑀})
221, 21mprgbir 3066 . . 3 (𝐾 ∩ {1, 𝑀}) = ∅
2322a1i 11 . 2 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
24 uncom 4168 . . . 4 ({1} ∪ (𝐾 ∪ {𝑀})) = ((𝐾 ∪ {𝑀}) ∪ {1})
25 1z 12645 . . . . . 6 1 ∈ ℤ
26 fzsn 13603 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
2725, 26ax-mp 5 . . . . 5 (1...1) = {1}
2815uneq1i 4174 . . . . . 6 (𝐾 ∪ {𝑀}) = (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀})
29 undif1 4482 . . . . . 6 (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀}) = ((2...(𝑁 + 1)) ∪ {𝑀})
3028, 29eqtr2i 2764 . . . . 5 ((2...(𝑁 + 1)) ∪ {𝑀}) = (𝐾 ∪ {𝑀})
3127, 30uneq12i 4176 . . . 4 ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = ({1} ∪ (𝐾 ∪ {𝑀}))
32 df-pr 4634 . . . . . . 7 {1, 𝑀} = ({1} ∪ {𝑀})
3332equncomi 4170 . . . . . 6 {1, 𝑀} = ({𝑀} ∪ {1})
3433uneq2i 4175 . . . . 5 (𝐾 ∪ {1, 𝑀}) = (𝐾 ∪ ({𝑀} ∪ {1}))
35 unass 4182 . . . . 5 ((𝐾 ∪ {𝑀}) ∪ {1}) = (𝐾 ∪ ({𝑀} ∪ {1}))
3634, 35eqtr4i 2766 . . . 4 (𝐾 ∪ {1, 𝑀}) = ((𝐾 ∪ {𝑀}) ∪ {1})
3724, 31, 363eqtr4i 2773 . . 3 ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = (𝐾 ∪ {1, 𝑀})
38 subfacp1lem1.m . . . . . . . 8 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
3938snssd 4814 . . . . . . 7 (𝜑 → {𝑀} ⊆ (2...(𝑁 + 1)))
40 ssequn2 4199 . . . . . . 7 ({𝑀} ⊆ (2...(𝑁 + 1)) ↔ ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1)))
4139, 40sylib 218 . . . . . 6 (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1)))
42 df-2 12327 . . . . . . 7 2 = (1 + 1)
4342oveq1i 7441 . . . . . 6 (2...(𝑁 + 1)) = ((1 + 1)...(𝑁 + 1))
4441, 43eqtrdi 2791 . . . . 5 (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = ((1 + 1)...(𝑁 + 1)))
4544uneq2d 4178 . . . 4 (𝜑 → ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
46 subfacp1lem1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4746peano2nnd 12281 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ)
48 nnuz 12919 . . . . . 6 ℕ = (ℤ‘1)
4947, 48eleqtrdi 2849 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
50 eluzfz1 13568 . . . . 5 ((𝑁 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 + 1)))
51 fzsplit 13587 . . . . 5 (1 ∈ (1...(𝑁 + 1)) → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
5249, 50, 513syl 18 . . . 4 (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
5345, 52eqtr4d 2778 . . 3 (𝜑 → ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = (1...(𝑁 + 1)))
5437, 53eqtr3id 2789 . 2 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
5542oveq2i 7442 . . 3 ((𝑁 + 1) − 2) = ((𝑁 + 1) − (1 + 1))
56 fzfi 14010 . . . . . . . . 9 (2...(𝑁 + 1)) ∈ Fin
57 diffi 9214 . . . . . . . . 9 ((2...(𝑁 + 1)) ∈ Fin → ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin)
5856, 57ax-mp 5 . . . . . . . 8 ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin
5915, 58eqeltri 2835 . . . . . . 7 𝐾 ∈ Fin
60 prfi 9361 . . . . . . 7 {1, 𝑀} ∈ Fin
61 hashun 14418 . . . . . . 7 ((𝐾 ∈ Fin ∧ {1, 𝑀} ∈ Fin ∧ (𝐾 ∩ {1, 𝑀}) = ∅) → (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀})))
6259, 60, 22, 61mp3an 1460 . . . . . 6 (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀}))
6354fveq2d 6911 . . . . . 6 (𝜑 → (♯‘(𝐾 ∪ {1, 𝑀})) = (♯‘(1...(𝑁 + 1))))
64 neeq1 3001 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥 ≠ 1 ↔ 𝑀 ≠ 1))
653, 11syl 17 . . . . . . . . . . 11 (𝑥 ∈ (2...(𝑁 + 1)) → 𝑥 ≠ 1)
6664, 65vtoclga 3577 . . . . . . . . . 10 (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ≠ 1)
6738, 66syl 17 . . . . . . . . 9 (𝜑𝑀 ≠ 1)
6867necomd 2994 . . . . . . . 8 (𝜑 → 1 ≠ 𝑀)
69 1ex 11255 . . . . . . . . 9 1 ∈ V
70 subfacp1lem1.x . . . . . . . . 9 𝑀 ∈ V
71 hashprg 14431 . . . . . . . . 9 ((1 ∈ V ∧ 𝑀 ∈ V) → (1 ≠ 𝑀 ↔ (♯‘{1, 𝑀}) = 2))
7269, 70, 71mp2an 692 . . . . . . . 8 (1 ≠ 𝑀 ↔ (♯‘{1, 𝑀}) = 2)
7368, 72sylib 218 . . . . . . 7 (𝜑 → (♯‘{1, 𝑀}) = 2)
7473oveq2d 7447 . . . . . 6 (𝜑 → ((♯‘𝐾) + (♯‘{1, 𝑀})) = ((♯‘𝐾) + 2))
7562, 63, 743eqtr3a 2799 . . . . 5 (𝜑 → (♯‘(1...(𝑁 + 1))) = ((♯‘𝐾) + 2))
7647nnnn0d 12585 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
77 hashfz1 14382 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
7876, 77syl 17 . . . . 5 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
7975, 78eqtr3d 2777 . . . 4 (𝜑 → ((♯‘𝐾) + 2) = (𝑁 + 1))
8047nncnd 12280 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℂ)
81 2cnd 12342 . . . . 5 (𝜑 → 2 ∈ ℂ)
82 hashcl 14392 . . . . . . . 8 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
8359, 82ax-mp 5 . . . . . . 7 (♯‘𝐾) ∈ ℕ0
8483nn0cni 12536 . . . . . 6 (♯‘𝐾) ∈ ℂ
8584a1i 11 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℂ)
8680, 81, 85subadd2d 11637 . . . 4 (𝜑 → (((𝑁 + 1) − 2) = (♯‘𝐾) ↔ ((♯‘𝐾) + 2) = (𝑁 + 1)))
8779, 86mpbird 257 . . 3 (𝜑 → ((𝑁 + 1) − 2) = (♯‘𝐾))
8846nncnd 12280 . . . 4 (𝜑𝑁 ∈ ℂ)
89 1cnd 11254 . . . 4 (𝜑 → 1 ∈ ℂ)
9088, 89, 89pnpcan2d 11656 . . 3 (𝜑 → ((𝑁 + 1) − (1 + 1)) = (𝑁 − 1))
9155, 87, 903eqtr3a 2799 . 2 (𝜑 → (♯‘𝐾) = (𝑁 − 1))
9223, 54, 913jca 1127 1 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  {cpr 4633   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  subfacp1lem2a  35165  subfacp1lem3  35167  subfacp1lem4  35168
  Copyright terms: Public domain W3C validator