Proof of Theorem subfacp1lem1
| Step | Hyp | Ref
| Expression |
| 1 | | disj 4430 |
. . . 4
⊢ ((𝐾 ∩ {1, 𝑀}) = ∅ ↔ ∀𝑥 ∈ 𝐾 ¬ 𝑥 ∈ {1, 𝑀}) |
| 2 | | eldifi 4111 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ∈ (2...(𝑁 + 1))) |
| 3 | | elfzle1 13549 |
. . . . . . . . 9
⊢ (𝑥 ∈ (2...(𝑁 + 1)) → 2 ≤ 𝑥) |
| 4 | | 1lt2 12416 |
. . . . . . . . . . . 12
⊢ 1 <
2 |
| 5 | | 1re 11240 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
| 6 | | 2re 12319 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
| 7 | 5, 6 | ltnlei 11361 |
. . . . . . . . . . . 12
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
| 8 | 4, 7 | mpbi 230 |
. . . . . . . . . . 11
⊢ ¬ 2
≤ 1 |
| 9 | | breq2 5128 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (2 ≤ 𝑥 ↔ 2 ≤
1)) |
| 10 | 8, 9 | mtbiri 327 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → ¬ 2 ≤ 𝑥) |
| 11 | 10 | necon2ai 2962 |
. . . . . . . . 9
⊢ (2 ≤
𝑥 → 𝑥 ≠ 1) |
| 12 | 2, 3, 11 | 3syl 18 |
. . . . . . . 8
⊢ (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ≠ 1) |
| 13 | | eldifsni 4771 |
. . . . . . . 8
⊢ (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ≠ 𝑀) |
| 14 | 12, 13 | jca 511 |
. . . . . . 7
⊢ (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → (𝑥 ≠ 1 ∧ 𝑥 ≠ 𝑀)) |
| 15 | | subfacp1lem1.k |
. . . . . . 7
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
| 16 | 14, 15 | eleq2s 2853 |
. . . . . 6
⊢ (𝑥 ∈ 𝐾 → (𝑥 ≠ 1 ∧ 𝑥 ≠ 𝑀)) |
| 17 | | neanior 3026 |
. . . . . 6
⊢ ((𝑥 ≠ 1 ∧ 𝑥 ≠ 𝑀) ↔ ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀)) |
| 18 | 16, 17 | sylib 218 |
. . . . 5
⊢ (𝑥 ∈ 𝐾 → ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀)) |
| 19 | | vex 3468 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 20 | 19 | elpr 4631 |
. . . . 5
⊢ (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀)) |
| 21 | 18, 20 | sylnibr 329 |
. . . 4
⊢ (𝑥 ∈ 𝐾 → ¬ 𝑥 ∈ {1, 𝑀}) |
| 22 | 1, 21 | mprgbir 3059 |
. . 3
⊢ (𝐾 ∩ {1, 𝑀}) = ∅ |
| 23 | 22 | a1i 11 |
. 2
⊢ (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅) |
| 24 | | uncom 4138 |
. . . 4
⊢ ({1}
∪ (𝐾 ∪ {𝑀})) = ((𝐾 ∪ {𝑀}) ∪ {1}) |
| 25 | | 1z 12627 |
. . . . . 6
⊢ 1 ∈
ℤ |
| 26 | | fzsn 13588 |
. . . . . 6
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 27 | 25, 26 | ax-mp 5 |
. . . . 5
⊢ (1...1) =
{1} |
| 28 | 15 | uneq1i 4144 |
. . . . . 6
⊢ (𝐾 ∪ {𝑀}) = (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀}) |
| 29 | | undif1 4456 |
. . . . . 6
⊢
(((2...(𝑁 + 1))
∖ {𝑀}) ∪ {𝑀}) = ((2...(𝑁 + 1)) ∪ {𝑀}) |
| 30 | 28, 29 | eqtr2i 2760 |
. . . . 5
⊢
((2...(𝑁 + 1)) ∪
{𝑀}) = (𝐾 ∪ {𝑀}) |
| 31 | 27, 30 | uneq12i 4146 |
. . . 4
⊢ ((1...1)
∪ ((2...(𝑁 + 1)) ∪
{𝑀})) = ({1} ∪ (𝐾 ∪ {𝑀})) |
| 32 | | df-pr 4609 |
. . . . . . 7
⊢ {1, 𝑀} = ({1} ∪ {𝑀}) |
| 33 | 32 | equncomi 4140 |
. . . . . 6
⊢ {1, 𝑀} = ({𝑀} ∪ {1}) |
| 34 | 33 | uneq2i 4145 |
. . . . 5
⊢ (𝐾 ∪ {1, 𝑀}) = (𝐾 ∪ ({𝑀} ∪ {1})) |
| 35 | | unass 4152 |
. . . . 5
⊢ ((𝐾 ∪ {𝑀}) ∪ {1}) = (𝐾 ∪ ({𝑀} ∪ {1})) |
| 36 | 34, 35 | eqtr4i 2762 |
. . . 4
⊢ (𝐾 ∪ {1, 𝑀}) = ((𝐾 ∪ {𝑀}) ∪ {1}) |
| 37 | 24, 31, 36 | 3eqtr4i 2769 |
. . 3
⊢ ((1...1)
∪ ((2...(𝑁 + 1)) ∪
{𝑀})) = (𝐾 ∪ {1, 𝑀}) |
| 38 | | subfacp1lem1.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
| 39 | 38 | snssd 4790 |
. . . . . . 7
⊢ (𝜑 → {𝑀} ⊆ (2...(𝑁 + 1))) |
| 40 | | ssequn2 4169 |
. . . . . . 7
⊢ ({𝑀} ⊆ (2...(𝑁 + 1)) ↔ ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1))) |
| 41 | 39, 40 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1))) |
| 42 | | df-2 12308 |
. . . . . . 7
⊢ 2 = (1 +
1) |
| 43 | 42 | oveq1i 7420 |
. . . . . 6
⊢
(2...(𝑁 + 1)) = ((1
+ 1)...(𝑁 +
1)) |
| 44 | 41, 43 | eqtrdi 2787 |
. . . . 5
⊢ (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = ((1 + 1)...(𝑁 + 1))) |
| 45 | 44 | uneq2d 4148 |
. . . 4
⊢ (𝜑 → ((1...1) ∪
((2...(𝑁 + 1)) ∪ {𝑀})) = ((1...1) ∪ ((1 +
1)...(𝑁 +
1)))) |
| 46 | | subfacp1lem1.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 47 | 46 | peano2nnd 12262 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 48 | | nnuz 12900 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 49 | 47, 48 | eleqtrdi 2845 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘1)) |
| 50 | | eluzfz1 13553 |
. . . . 5
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑁 + 1))) |
| 51 | | fzsplit 13572 |
. . . . 5
⊢ (1 ∈
(1...(𝑁 + 1)) →
(1...(𝑁 + 1)) = ((1...1)
∪ ((1 + 1)...(𝑁 +
1)))) |
| 52 | 49, 50, 51 | 3syl 18 |
. . . 4
⊢ (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1)))) |
| 53 | 45, 52 | eqtr4d 2774 |
. . 3
⊢ (𝜑 → ((1...1) ∪
((2...(𝑁 + 1)) ∪ {𝑀})) = (1...(𝑁 + 1))) |
| 54 | 37, 53 | eqtr3id 2785 |
. 2
⊢ (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) |
| 55 | 42 | oveq2i 7421 |
. . 3
⊢ ((𝑁 + 1) − 2) = ((𝑁 + 1) − (1 +
1)) |
| 56 | | fzfi 13995 |
. . . . . . . . 9
⊢
(2...(𝑁 + 1)) ∈
Fin |
| 57 | | diffi 9194 |
. . . . . . . . 9
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
Fin) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . 8
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
Fin |
| 59 | 15, 58 | eqeltri 2831 |
. . . . . . 7
⊢ 𝐾 ∈ Fin |
| 60 | | prfi 9340 |
. . . . . . 7
⊢ {1, 𝑀} ∈ Fin |
| 61 | | hashun 14405 |
. . . . . . 7
⊢ ((𝐾 ∈ Fin ∧ {1, 𝑀} ∈ Fin ∧ (𝐾 ∩ {1, 𝑀}) = ∅) → (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀}))) |
| 62 | 59, 60, 22, 61 | mp3an 1463 |
. . . . . 6
⊢
(♯‘(𝐾
∪ {1, 𝑀})) =
((♯‘𝐾) +
(♯‘{1, 𝑀})) |
| 63 | 54 | fveq2d 6885 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝐾 ∪ {1, 𝑀})) = (♯‘(1...(𝑁 + 1)))) |
| 64 | | neeq1 2995 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝑥 ≠ 1 ↔ 𝑀 ≠ 1)) |
| 65 | 3, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (2...(𝑁 + 1)) → 𝑥 ≠ 1) |
| 66 | 64, 65 | vtoclga 3561 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ≠ 1) |
| 67 | 38, 66 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ≠ 1) |
| 68 | 67 | necomd 2988 |
. . . . . . . 8
⊢ (𝜑 → 1 ≠ 𝑀) |
| 69 | | 1ex 11236 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 70 | | subfacp1lem1.x |
. . . . . . . . 9
⊢ 𝑀 ∈ V |
| 71 | | hashprg 14418 |
. . . . . . . . 9
⊢ ((1
∈ V ∧ 𝑀 ∈ V)
→ (1 ≠ 𝑀 ↔
(♯‘{1, 𝑀}) =
2)) |
| 72 | 69, 70, 71 | mp2an 692 |
. . . . . . . 8
⊢ (1 ≠
𝑀 ↔ (♯‘{1,
𝑀}) = 2) |
| 73 | 68, 72 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → (♯‘{1, 𝑀}) = 2) |
| 74 | 73 | oveq2d 7426 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐾) + (♯‘{1, 𝑀})) = ((♯‘𝐾) + 2)) |
| 75 | 62, 63, 74 | 3eqtr3a 2795 |
. . . . 5
⊢ (𝜑 → (♯‘(1...(𝑁 + 1))) = ((♯‘𝐾) + 2)) |
| 76 | 47 | nnnn0d 12567 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 77 | | hashfz1 14369 |
. . . . . 6
⊢ ((𝑁 + 1) ∈ ℕ0
→ (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) |
| 78 | 76, 77 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) |
| 79 | 75, 78 | eqtr3d 2773 |
. . . 4
⊢ (𝜑 → ((♯‘𝐾) + 2) = (𝑁 + 1)) |
| 80 | 47 | nncnd 12261 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
| 81 | | 2cnd 12323 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℂ) |
| 82 | | hashcl 14379 |
. . . . . . . 8
⊢ (𝐾 ∈ Fin →
(♯‘𝐾) ∈
ℕ0) |
| 83 | 59, 82 | ax-mp 5 |
. . . . . . 7
⊢
(♯‘𝐾)
∈ ℕ0 |
| 84 | 83 | nn0cni 12518 |
. . . . . 6
⊢
(♯‘𝐾)
∈ ℂ |
| 85 | 84 | a1i 11 |
. . . . 5
⊢ (𝜑 → (♯‘𝐾) ∈
ℂ) |
| 86 | 80, 81, 85 | subadd2d 11618 |
. . . 4
⊢ (𝜑 → (((𝑁 + 1) − 2) = (♯‘𝐾) ↔ ((♯‘𝐾) + 2) = (𝑁 + 1))) |
| 87 | 79, 86 | mpbird 257 |
. . 3
⊢ (𝜑 → ((𝑁 + 1) − 2) = (♯‘𝐾)) |
| 88 | 46 | nncnd 12261 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 89 | | 1cnd 11235 |
. . . 4
⊢ (𝜑 → 1 ∈
ℂ) |
| 90 | 88, 89, 89 | pnpcan2d 11637 |
. . 3
⊢ (𝜑 → ((𝑁 + 1) − (1 + 1)) = (𝑁 − 1)) |
| 91 | 55, 87, 90 | 3eqtr3a 2795 |
. 2
⊢ (𝜑 → (♯‘𝐾) = (𝑁 − 1)) |
| 92 | 23, 54, 91 | 3jca 1128 |
1
⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) |