Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem1 Structured version   Visualization version   GIF version

Theorem subfacp1lem1 32430
Description: Lemma for subfacp1 32437. The set 𝐾 together with {1, 𝑀} partitions the set 1...(𝑁 + 1). (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
Assertion
Ref Expression
subfacp1lem1 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
Distinct variable groups:   𝑓,𝑛,𝑥,𝑦,𝐴   𝑓,𝑁,𝑛,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐷(𝑥,𝑦,𝑓)   𝑆(𝑓)   𝑀(𝑛)

Proof of Theorem subfacp1lem1
StepHypRef Expression
1 disj 4402 . . . 4 ((𝐾 ∩ {1, 𝑀}) = ∅ ↔ ∀𝑥𝐾 ¬ 𝑥 ∈ {1, 𝑀})
2 eldifi 4106 . . . . . . . . 9 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ∈ (2...(𝑁 + 1)))
3 elfzle1 12913 . . . . . . . . 9 (𝑥 ∈ (2...(𝑁 + 1)) → 2 ≤ 𝑥)
4 1lt2 11811 . . . . . . . . . . . 12 1 < 2
5 1re 10644 . . . . . . . . . . . . 13 1 ∈ ℝ
6 2re 11714 . . . . . . . . . . . . 13 2 ∈ ℝ
75, 6ltnlei 10764 . . . . . . . . . . . 12 (1 < 2 ↔ ¬ 2 ≤ 1)
84, 7mpbi 232 . . . . . . . . . . 11 ¬ 2 ≤ 1
9 breq2 5073 . . . . . . . . . . 11 (𝑥 = 1 → (2 ≤ 𝑥 ↔ 2 ≤ 1))
108, 9mtbiri 329 . . . . . . . . . 10 (𝑥 = 1 → ¬ 2 ≤ 𝑥)
1110necon2ai 3048 . . . . . . . . 9 (2 ≤ 𝑥𝑥 ≠ 1)
122, 3, 113syl 18 . . . . . . . 8 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥 ≠ 1)
13 eldifsni 4725 . . . . . . . 8 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → 𝑥𝑀)
1412, 13jca 514 . . . . . . 7 (𝑥 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) → (𝑥 ≠ 1 ∧ 𝑥𝑀))
15 subfacp1lem1.k . . . . . . 7 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
1614, 15eleq2s 2934 . . . . . 6 (𝑥𝐾 → (𝑥 ≠ 1 ∧ 𝑥𝑀))
17 neanior 3112 . . . . . 6 ((𝑥 ≠ 1 ∧ 𝑥𝑀) ↔ ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀))
1816, 17sylib 220 . . . . 5 (𝑥𝐾 → ¬ (𝑥 = 1 ∨ 𝑥 = 𝑀))
19 vex 3500 . . . . . 6 𝑥 ∈ V
2019elpr 4593 . . . . 5 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
2118, 20sylnibr 331 . . . 4 (𝑥𝐾 → ¬ 𝑥 ∈ {1, 𝑀})
221, 21mprgbir 3156 . . 3 (𝐾 ∩ {1, 𝑀}) = ∅
2322a1i 11 . 2 (𝜑 → (𝐾 ∩ {1, 𝑀}) = ∅)
24 uncom 4132 . . . 4 ({1} ∪ (𝐾 ∪ {𝑀})) = ((𝐾 ∪ {𝑀}) ∪ {1})
25 1z 12015 . . . . . 6 1 ∈ ℤ
26 fzsn 12952 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
2725, 26ax-mp 5 . . . . 5 (1...1) = {1}
2815uneq1i 4138 . . . . . 6 (𝐾 ∪ {𝑀}) = (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀})
29 undif1 4427 . . . . . 6 (((2...(𝑁 + 1)) ∖ {𝑀}) ∪ {𝑀}) = ((2...(𝑁 + 1)) ∪ {𝑀})
3028, 29eqtr2i 2848 . . . . 5 ((2...(𝑁 + 1)) ∪ {𝑀}) = (𝐾 ∪ {𝑀})
3127, 30uneq12i 4140 . . . 4 ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = ({1} ∪ (𝐾 ∪ {𝑀}))
32 df-pr 4573 . . . . . . 7 {1, 𝑀} = ({1} ∪ {𝑀})
3332equncomi 4134 . . . . . 6 {1, 𝑀} = ({𝑀} ∪ {1})
3433uneq2i 4139 . . . . 5 (𝐾 ∪ {1, 𝑀}) = (𝐾 ∪ ({𝑀} ∪ {1}))
35 unass 4145 . . . . 5 ((𝐾 ∪ {𝑀}) ∪ {1}) = (𝐾 ∪ ({𝑀} ∪ {1}))
3634, 35eqtr4i 2850 . . . 4 (𝐾 ∪ {1, 𝑀}) = ((𝐾 ∪ {𝑀}) ∪ {1})
3724, 31, 363eqtr4i 2857 . . 3 ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = (𝐾 ∪ {1, 𝑀})
38 subfacp1lem1.m . . . . . . . 8 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
3938snssd 4745 . . . . . . 7 (𝜑 → {𝑀} ⊆ (2...(𝑁 + 1)))
40 ssequn2 4162 . . . . . . 7 ({𝑀} ⊆ (2...(𝑁 + 1)) ↔ ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1)))
4139, 40sylib 220 . . . . . 6 (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = (2...(𝑁 + 1)))
42 df-2 11703 . . . . . . 7 2 = (1 + 1)
4342oveq1i 7169 . . . . . 6 (2...(𝑁 + 1)) = ((1 + 1)...(𝑁 + 1))
4441, 43syl6eq 2875 . . . . 5 (𝜑 → ((2...(𝑁 + 1)) ∪ {𝑀}) = ((1 + 1)...(𝑁 + 1)))
4544uneq2d 4142 . . . 4 (𝜑 → ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
46 subfacp1lem1.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
4746peano2nnd 11658 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ)
48 nnuz 12284 . . . . . 6 ℕ = (ℤ‘1)
4947, 48eleqtrdi 2926 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘1))
50 eluzfz1 12917 . . . . 5 ((𝑁 + 1) ∈ (ℤ‘1) → 1 ∈ (1...(𝑁 + 1)))
51 fzsplit 12936 . . . . 5 (1 ∈ (1...(𝑁 + 1)) → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
5249, 50, 513syl 18 . . . 4 (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1))))
5345, 52eqtr4d 2862 . . 3 (𝜑 → ((1...1) ∪ ((2...(𝑁 + 1)) ∪ {𝑀})) = (1...(𝑁 + 1)))
5437, 53syl5eqr 2873 . 2 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
5542oveq2i 7170 . . 3 ((𝑁 + 1) − 2) = ((𝑁 + 1) − (1 + 1))
56 fzfi 13343 . . . . . . . . 9 (2...(𝑁 + 1)) ∈ Fin
57 diffi 8753 . . . . . . . . 9 ((2...(𝑁 + 1)) ∈ Fin → ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin)
5856, 57ax-mp 5 . . . . . . . 8 ((2...(𝑁 + 1)) ∖ {𝑀}) ∈ Fin
5915, 58eqeltri 2912 . . . . . . 7 𝐾 ∈ Fin
60 prfi 8796 . . . . . . 7 {1, 𝑀} ∈ Fin
61 hashun 13746 . . . . . . 7 ((𝐾 ∈ Fin ∧ {1, 𝑀} ∈ Fin ∧ (𝐾 ∩ {1, 𝑀}) = ∅) → (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀})))
6259, 60, 22, 61mp3an 1457 . . . . . 6 (♯‘(𝐾 ∪ {1, 𝑀})) = ((♯‘𝐾) + (♯‘{1, 𝑀}))
6354fveq2d 6677 . . . . . 6 (𝜑 → (♯‘(𝐾 ∪ {1, 𝑀})) = (♯‘(1...(𝑁 + 1))))
64 neeq1 3081 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝑥 ≠ 1 ↔ 𝑀 ≠ 1))
653, 11syl 17 . . . . . . . . . . 11 (𝑥 ∈ (2...(𝑁 + 1)) → 𝑥 ≠ 1)
6664, 65vtoclga 3577 . . . . . . . . . 10 (𝑀 ∈ (2...(𝑁 + 1)) → 𝑀 ≠ 1)
6738, 66syl 17 . . . . . . . . 9 (𝜑𝑀 ≠ 1)
6867necomd 3074 . . . . . . . 8 (𝜑 → 1 ≠ 𝑀)
69 1ex 10640 . . . . . . . . 9 1 ∈ V
70 subfacp1lem1.x . . . . . . . . 9 𝑀 ∈ V
71 hashprg 13759 . . . . . . . . 9 ((1 ∈ V ∧ 𝑀 ∈ V) → (1 ≠ 𝑀 ↔ (♯‘{1, 𝑀}) = 2))
7269, 70, 71mp2an 690 . . . . . . . 8 (1 ≠ 𝑀 ↔ (♯‘{1, 𝑀}) = 2)
7368, 72sylib 220 . . . . . . 7 (𝜑 → (♯‘{1, 𝑀}) = 2)
7473oveq2d 7175 . . . . . 6 (𝜑 → ((♯‘𝐾) + (♯‘{1, 𝑀})) = ((♯‘𝐾) + 2))
7562, 63, 743eqtr3a 2883 . . . . 5 (𝜑 → (♯‘(1...(𝑁 + 1))) = ((♯‘𝐾) + 2))
7647nnnn0d 11958 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
77 hashfz1 13709 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
7876, 77syl 17 . . . . 5 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
7975, 78eqtr3d 2861 . . . 4 (𝜑 → ((♯‘𝐾) + 2) = (𝑁 + 1))
8047nncnd 11657 . . . . 5 (𝜑 → (𝑁 + 1) ∈ ℂ)
81 2cnd 11718 . . . . 5 (𝜑 → 2 ∈ ℂ)
82 hashcl 13720 . . . . . . . 8 (𝐾 ∈ Fin → (♯‘𝐾) ∈ ℕ0)
8359, 82ax-mp 5 . . . . . . 7 (♯‘𝐾) ∈ ℕ0
8483nn0cni 11912 . . . . . 6 (♯‘𝐾) ∈ ℂ
8584a1i 11 . . . . 5 (𝜑 → (♯‘𝐾) ∈ ℂ)
8680, 81, 85subadd2d 11019 . . . 4 (𝜑 → (((𝑁 + 1) − 2) = (♯‘𝐾) ↔ ((♯‘𝐾) + 2) = (𝑁 + 1)))
8779, 86mpbird 259 . . 3 (𝜑 → ((𝑁 + 1) − 2) = (♯‘𝐾))
8846nncnd 11657 . . . 4 (𝜑𝑁 ∈ ℂ)
89 1cnd 10639 . . . 4 (𝜑 → 1 ∈ ℂ)
9088, 89, 89pnpcan2d 11038 . . 3 (𝜑 → ((𝑁 + 1) − (1 + 1)) = (𝑁 − 1))
9155, 87, 903eqtr3a 2883 . 2 (𝜑 → (♯‘𝐾) = (𝑁 − 1))
9223, 54, 913jca 1124 1 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  {cab 2802  wne 3019  wral 3141  Vcvv 3497  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  {csn 4570  {cpr 4572   class class class wbr 5069  cmpt 5149  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  Fincfn 8512  cc 10538  1c1 10541   + caddc 10543   < clt 10678  cle 10679  cmin 10873  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  subfacp1lem2a  32431  subfacp1lem3  32433  subfacp1lem4  32434
  Copyright terms: Public domain W3C validator