MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1 Structured version   Visualization version   GIF version

Theorem i1f1 25744
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
i1f1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem i1f1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
21i1f1lem 25743 . . . . 5 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
32simpli 483 . . . 4 𝐹:ℝ⟶{0, 1}
4 0re 11292 . . . . 5 0 ∈ ℝ
5 1re 11290 . . . . 5 1 ∈ ℝ
6 prssi 4846 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
74, 5, 6mp2an 691 . . . 4 {0, 1} ⊆ ℝ
8 fss 6763 . . . 4 ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
93, 7, 8mp2an 691 . . 3 𝐹:ℝ⟶ℝ
109a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ)
11 prfi 9391 . . 3 {0, 1} ∈ Fin
12 1ex 11286 . . . . . . . 8 1 ∈ V
1312prid2 4788 . . . . . . 7 1 ∈ {0, 1}
14 c0ex 11284 . . . . . . . 8 0 ∈ V
1514prid1 4787 . . . . . . 7 0 ∈ {0, 1}
1613, 15ifcli 4595 . . . . . 6 if(𝑥𝐴, 1, 0) ∈ {0, 1}
1716a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
1817, 1fmptd 7148 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1})
19 frn 6754 . . . 4 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2018, 19syl 17 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1})
21 ssfi 9240 . . 3 (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin)
2211, 20, 21sylancr 586 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin)
233, 19ax-mp 5 . . . . . . . . . . 11 ran 𝐹 ⊆ {0, 1}
24 df-pr 4651 . . . . . . . . . . . 12 {0, 1} = ({0} ∪ {1})
2524equncomi 4183 . . . . . . . . . . 11 {0, 1} = ({1} ∪ {0})
2623, 25sseqtri 4045 . . . . . . . . . 10 ran 𝐹 ⊆ ({1} ∪ {0})
27 ssdif 4167 . . . . . . . . . 10 (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}))
2826, 27ax-mp 5 . . . . . . . . 9 (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})
29 difun2 4504 . . . . . . . . . 10 (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0})
30 difss 4159 . . . . . . . . . 10 ({1} ∖ {0}) ⊆ {1}
3129, 30eqsstri 4043 . . . . . . . . 9 (({1} ∪ {0}) ∖ {0}) ⊆ {1}
3228, 31sstri 4018 . . . . . . . 8 (ran 𝐹 ∖ {0}) ⊆ {1}
3332sseli 4004 . . . . . . 7 (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1})
34 elsni 4665 . . . . . . 7 (𝑦 ∈ {1} → 𝑦 = 1)
3533, 34syl 17 . . . . . 6 (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1)
3635sneqd 4660 . . . . 5 (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1})
3736imaeq2d 6089 . . . 4 (𝑦 ∈ (ran 𝐹 ∖ {0}) → (𝐹 “ {𝑦}) = (𝐹 “ {1}))
382simpri 485 . . . . 5 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
3938adantr 480 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐹 “ {1}) = 𝐴)
4037, 39sylan9eqr 2802 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑦}) = 𝐴)
41 simpll 766 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol)
4240, 41eqeltrd 2844 . 2 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
4340fveq2d 6924 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol‘𝐴))
44 simplr 768 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ)
4543, 44eqeltrd 2844 . 2 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
4610, 22, 42, 45i1fd 25735 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  cun 3974  wss 3976  ifcif 4548  {csn 4648  {cpr 4650  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  cfv 6573  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185  volcvol 25517  1citg1 25669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674
This theorem is referenced by:  itg11  25745  itg2const  25795  itg2addnclem  37631
  Copyright terms: Public domain W3C validator