MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1f1 Structured version   Visualization version   GIF version

Theorem i1f1 25619
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
i1f1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem i1f1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
21i1f1lem 25618 . . . . 5 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
32simpli 483 . . . 4 𝐹:ℝ⟶{0, 1}
4 0re 11114 . . . . 5 0 ∈ ℝ
5 1re 11112 . . . . 5 1 ∈ ℝ
6 prssi 4773 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
74, 5, 6mp2an 692 . . . 4 {0, 1} ⊆ ℝ
8 fss 6667 . . . 4 ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
93, 7, 8mp2an 692 . . 3 𝐹:ℝ⟶ℝ
109a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ)
11 prfi 9208 . . 3 {0, 1} ∈ Fin
12 1ex 11108 . . . . . . . 8 1 ∈ V
1312prid2 4716 . . . . . . 7 1 ∈ {0, 1}
14 c0ex 11106 . . . . . . . 8 0 ∈ V
1514prid1 4715 . . . . . . 7 0 ∈ {0, 1}
1613, 15ifcli 4523 . . . . . 6 if(𝑥𝐴, 1, 0) ∈ {0, 1}
1716a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ {0, 1})
1817, 1fmptd 7047 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1})
19 frn 6658 . . . 4 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2018, 19syl 17 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1})
21 ssfi 9082 . . 3 (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin)
2211, 20, 21sylancr 587 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin)
233, 19ax-mp 5 . . . . . . . . . . 11 ran 𝐹 ⊆ {0, 1}
24 df-pr 4579 . . . . . . . . . . . 12 {0, 1} = ({0} ∪ {1})
2524equncomi 4110 . . . . . . . . . . 11 {0, 1} = ({1} ∪ {0})
2623, 25sseqtri 3983 . . . . . . . . . 10 ran 𝐹 ⊆ ({1} ∪ {0})
27 ssdif 4094 . . . . . . . . . 10 (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}))
2826, 27ax-mp 5 . . . . . . . . 9 (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})
29 difun2 4431 . . . . . . . . . 10 (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0})
30 difss 4086 . . . . . . . . . 10 ({1} ∖ {0}) ⊆ {1}
3129, 30eqsstri 3981 . . . . . . . . 9 (({1} ∪ {0}) ∖ {0}) ⊆ {1}
3228, 31sstri 3944 . . . . . . . 8 (ran 𝐹 ∖ {0}) ⊆ {1}
3332sseli 3930 . . . . . . 7 (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1})
34 elsni 4593 . . . . . . 7 (𝑦 ∈ {1} → 𝑦 = 1)
3533, 34syl 17 . . . . . 6 (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1)
3635sneqd 4588 . . . . 5 (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1})
3736imaeq2d 6009 . . . 4 (𝑦 ∈ (ran 𝐹 ∖ {0}) → (𝐹 “ {𝑦}) = (𝐹 “ {1}))
382simpri 485 . . . . 5 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
3938adantr 480 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐹 “ {1}) = 𝐴)
4037, 39sylan9eqr 2788 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑦}) = 𝐴)
41 simpll 766 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol)
4240, 41eqeltrd 2831 . 2 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑦}) ∈ dom vol)
4340fveq2d 6826 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) = (vol‘𝐴))
44 simplr 768 . . 3 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ)
4543, 44eqeltrd 2831 . 2 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑦})) ∈ ℝ)
4610, 22, 42, 45i1fd 25610 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3899  cun 3900  wss 3902  ifcif 4475  {csn 4576  {cpr 4578  cmpt 5172  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  wf 6477  cfv 6481  Fincfn 8869  cr 11005  0cc0 11006  1c1 11007  volcvol 25392  1citg1 25544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21285  df-met 21286  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549
This theorem is referenced by:  itg11  25620  itg2const  25669  itg2addnclem  37717
  Copyright terms: Public domain W3C validator