Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1f1 | Structured version Visualization version GIF version |
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
Ref | Expression |
---|---|
i1f1 | ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1f1.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
2 | 1 | i1f1lem 24758 | . . . . 5 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
3 | 2 | simpli 483 | . . . 4 ⊢ 𝐹:ℝ⟶{0, 1} |
4 | 0re 10908 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | 1re 10906 | . . . . 5 ⊢ 1 ∈ ℝ | |
6 | prssi 4751 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 688 | . . . 4 ⊢ {0, 1} ⊆ ℝ |
8 | fss 6601 | . . . 4 ⊢ ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
9 | 3, 7, 8 | mp2an 688 | . . 3 ⊢ 𝐹:ℝ⟶ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
11 | prfi 9019 | . . 3 ⊢ {0, 1} ∈ Fin | |
12 | 1ex 10902 | . . . . . . . 8 ⊢ 1 ∈ V | |
13 | 12 | prid2 4696 | . . . . . . 7 ⊢ 1 ∈ {0, 1} |
14 | c0ex 10900 | . . . . . . . 8 ⊢ 0 ∈ V | |
15 | 14 | prid1 4695 | . . . . . . 7 ⊢ 0 ∈ {0, 1} |
16 | 13, 15 | ifcli 4503 | . . . . . 6 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
17 | 16 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
18 | 17, 1 | fmptd 6970 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1}) |
19 | frn 6591 | . . . 4 ⊢ (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1}) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1}) |
21 | ssfi 8918 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin) | |
22 | 11, 20, 21 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin) |
23 | 3, 19 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ran 𝐹 ⊆ {0, 1} |
24 | df-pr 4561 | . . . . . . . . . . . 12 ⊢ {0, 1} = ({0} ∪ {1}) | |
25 | 24 | equncomi 4085 | . . . . . . . . . . 11 ⊢ {0, 1} = ({1} ∪ {0}) |
26 | 23, 25 | sseqtri 3953 | . . . . . . . . . 10 ⊢ ran 𝐹 ⊆ ({1} ∪ {0}) |
27 | ssdif 4070 | . . . . . . . . . 10 ⊢ (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}) |
29 | difun2 4411 | . . . . . . . . . 10 ⊢ (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0}) | |
30 | difss 4062 | . . . . . . . . . 10 ⊢ ({1} ∖ {0}) ⊆ {1} | |
31 | 29, 30 | eqsstri 3951 | . . . . . . . . 9 ⊢ (({1} ∪ {0}) ∖ {0}) ⊆ {1} |
32 | 28, 31 | sstri 3926 | . . . . . . . 8 ⊢ (ran 𝐹 ∖ {0}) ⊆ {1} |
33 | 32 | sseli 3913 | . . . . . . 7 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1}) |
34 | elsni 4575 | . . . . . . 7 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
35 | 33, 34 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1) |
36 | 35 | sneqd 4570 | . . . . 5 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1}) |
37 | 36 | imaeq2d 5958 | . . . 4 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {1})) |
38 | 2 | simpri 485 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
39 | 38 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (◡𝐹 “ {1}) = 𝐴) |
40 | 37, 39 | sylan9eqr 2801 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = 𝐴) |
41 | simpll 763 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol) | |
42 | 40, 41 | eqeltrd 2839 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
43 | 40 | fveq2d 6760 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘𝐴)) |
44 | simplr 765 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ) | |
45 | 43, 44 | eqeltrd 2839 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
46 | 10, 22, 42, 45 | i1fd 24750 | 1 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ifcif 4456 {csn 4558 {cpr 4560 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ⟶wf 6414 ‘cfv 6418 Fincfn 8691 ℝcr 10801 0cc0 10802 1c1 10803 volcvol 24532 ∫1citg1 24684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 |
This theorem is referenced by: itg11 24760 itg2const 24810 itg2addnclem 35755 |
Copyright terms: Public domain | W3C validator |