![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1f1 | Structured version Visualization version GIF version |
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
Ref | Expression |
---|---|
i1f1 | ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1f1.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
2 | 1 | i1f1lem 25053 | . . . . 5 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
3 | 2 | simpli 484 | . . . 4 ⊢ 𝐹:ℝ⟶{0, 1} |
4 | 0re 11157 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | 1re 11155 | . . . . 5 ⊢ 1 ∈ ℝ | |
6 | prssi 4781 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 690 | . . . 4 ⊢ {0, 1} ⊆ ℝ |
8 | fss 6685 | . . . 4 ⊢ ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
9 | 3, 7, 8 | mp2an 690 | . . 3 ⊢ 𝐹:ℝ⟶ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
11 | prfi 9266 | . . 3 ⊢ {0, 1} ∈ Fin | |
12 | 1ex 11151 | . . . . . . . 8 ⊢ 1 ∈ V | |
13 | 12 | prid2 4724 | . . . . . . 7 ⊢ 1 ∈ {0, 1} |
14 | c0ex 11149 | . . . . . . . 8 ⊢ 0 ∈ V | |
15 | 14 | prid1 4723 | . . . . . . 7 ⊢ 0 ∈ {0, 1} |
16 | 13, 15 | ifcli 4533 | . . . . . 6 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
17 | 16 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
18 | 17, 1 | fmptd 7062 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1}) |
19 | frn 6675 | . . . 4 ⊢ (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1}) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1}) |
21 | ssfi 9117 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin) | |
22 | 11, 20, 21 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin) |
23 | 3, 19 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ran 𝐹 ⊆ {0, 1} |
24 | df-pr 4589 | . . . . . . . . . . . 12 ⊢ {0, 1} = ({0} ∪ {1}) | |
25 | 24 | equncomi 4115 | . . . . . . . . . . 11 ⊢ {0, 1} = ({1} ∪ {0}) |
26 | 23, 25 | sseqtri 3980 | . . . . . . . . . 10 ⊢ ran 𝐹 ⊆ ({1} ∪ {0}) |
27 | ssdif 4099 | . . . . . . . . . 10 ⊢ (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}) |
29 | difun2 4440 | . . . . . . . . . 10 ⊢ (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0}) | |
30 | difss 4091 | . . . . . . . . . 10 ⊢ ({1} ∖ {0}) ⊆ {1} | |
31 | 29, 30 | eqsstri 3978 | . . . . . . . . 9 ⊢ (({1} ∪ {0}) ∖ {0}) ⊆ {1} |
32 | 28, 31 | sstri 3953 | . . . . . . . 8 ⊢ (ran 𝐹 ∖ {0}) ⊆ {1} |
33 | 32 | sseli 3940 | . . . . . . 7 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1}) |
34 | elsni 4603 | . . . . . . 7 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
35 | 33, 34 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1) |
36 | 35 | sneqd 4598 | . . . . 5 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1}) |
37 | 36 | imaeq2d 6013 | . . . 4 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {1})) |
38 | 2 | simpri 486 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
39 | 38 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (◡𝐹 “ {1}) = 𝐴) |
40 | 37, 39 | sylan9eqr 2798 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = 𝐴) |
41 | simpll 765 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol) | |
42 | 40, 41 | eqeltrd 2838 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
43 | 40 | fveq2d 6846 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘𝐴)) |
44 | simplr 767 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ) | |
45 | 43, 44 | eqeltrd 2838 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
46 | 10, 22, 42, 45 | i1fd 25045 | 1 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3907 ∪ cun 3908 ⊆ wss 3910 ifcif 4486 {csn 4586 {cpr 4588 ↦ cmpt 5188 ◡ccnv 5632 dom cdm 5633 ran crn 5634 “ cima 5636 ⟶wf 6492 ‘cfv 6496 Fincfn 8883 ℝcr 11050 0cc0 11051 1c1 11052 volcvol 24827 ∫1citg1 24979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-rp 12916 df-xadd 13034 df-ioo 13268 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-xmet 20789 df-met 20790 df-ovol 24828 df-vol 24829 df-mbf 24983 df-itg1 24984 |
This theorem is referenced by: itg11 25055 itg2const 25105 itg2addnclem 36129 |
Copyright terms: Public domain | W3C validator |