![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1f1 | Structured version Visualization version GIF version |
Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
Ref | Expression |
---|---|
i1f1 | ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1f1.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
2 | 1 | i1f1lem 25743 | . . . . 5 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
3 | 2 | simpli 483 | . . . 4 ⊢ 𝐹:ℝ⟶{0, 1} |
4 | 0re 11292 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
6 | prssi 4846 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
7 | 4, 5, 6 | mp2an 691 | . . . 4 ⊢ {0, 1} ⊆ ℝ |
8 | fss 6763 | . . . 4 ⊢ ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
9 | 3, 7, 8 | mp2an 691 | . . 3 ⊢ 𝐹:ℝ⟶ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
11 | prfi 9391 | . . 3 ⊢ {0, 1} ∈ Fin | |
12 | 1ex 11286 | . . . . . . . 8 ⊢ 1 ∈ V | |
13 | 12 | prid2 4788 | . . . . . . 7 ⊢ 1 ∈ {0, 1} |
14 | c0ex 11284 | . . . . . . . 8 ⊢ 0 ∈ V | |
15 | 14 | prid1 4787 | . . . . . . 7 ⊢ 0 ∈ {0, 1} |
16 | 13, 15 | ifcli 4595 | . . . . . 6 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
17 | 16 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
18 | 17, 1 | fmptd 7148 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1}) |
19 | frn 6754 | . . . 4 ⊢ (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1}) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1}) |
21 | ssfi 9240 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin) | |
22 | 11, 20, 21 | sylancr 586 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin) |
23 | 3, 19 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ran 𝐹 ⊆ {0, 1} |
24 | df-pr 4651 | . . . . . . . . . . . 12 ⊢ {0, 1} = ({0} ∪ {1}) | |
25 | 24 | equncomi 4183 | . . . . . . . . . . 11 ⊢ {0, 1} = ({1} ∪ {0}) |
26 | 23, 25 | sseqtri 4045 | . . . . . . . . . 10 ⊢ ran 𝐹 ⊆ ({1} ∪ {0}) |
27 | ssdif 4167 | . . . . . . . . . 10 ⊢ (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}) |
29 | difun2 4504 | . . . . . . . . . 10 ⊢ (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0}) | |
30 | difss 4159 | . . . . . . . . . 10 ⊢ ({1} ∖ {0}) ⊆ {1} | |
31 | 29, 30 | eqsstri 4043 | . . . . . . . . 9 ⊢ (({1} ∪ {0}) ∖ {0}) ⊆ {1} |
32 | 28, 31 | sstri 4018 | . . . . . . . 8 ⊢ (ran 𝐹 ∖ {0}) ⊆ {1} |
33 | 32 | sseli 4004 | . . . . . . 7 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1}) |
34 | elsni 4665 | . . . . . . 7 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
35 | 33, 34 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1) |
36 | 35 | sneqd 4660 | . . . . 5 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1}) |
37 | 36 | imaeq2d 6089 | . . . 4 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {1})) |
38 | 2 | simpri 485 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
39 | 38 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (◡𝐹 “ {1}) = 𝐴) |
40 | 37, 39 | sylan9eqr 2802 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = 𝐴) |
41 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol) | |
42 | 40, 41 | eqeltrd 2844 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
43 | 40 | fveq2d 6924 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘𝐴)) |
44 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ) | |
45 | 43, 44 | eqeltrd 2844 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
46 | 10, 22, 42, 45 | i1fd 25735 | 1 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 ifcif 4548 {csn 4648 {cpr 4650 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ⟶wf 6569 ‘cfv 6573 Fincfn 9003 ℝcr 11183 0cc0 11184 1c1 11185 volcvol 25517 ∫1citg1 25669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 |
This theorem is referenced by: itg11 25745 itg2const 25795 itg2addnclem 37631 |
Copyright terms: Public domain | W3C validator |