| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1f1 | Structured version Visualization version GIF version | ||
| Description: Base case simple functions are indicator functions of measurable sets. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1f1.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
| Ref | Expression |
|---|---|
| i1f1 | ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) | |
| 2 | 1 | i1f1lem 25597 | . . . . 5 ⊢ (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴)) |
| 3 | 2 | simpli 483 | . . . 4 ⊢ 𝐹:ℝ⟶{0, 1} |
| 4 | 0re 11183 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11181 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 6 | prssi 4788 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ) | |
| 7 | 4, 5, 6 | mp2an 692 | . . . 4 ⊢ {0, 1} ⊆ ℝ |
| 8 | fss 6707 | . . . 4 ⊢ ((𝐹:ℝ⟶{0, 1} ∧ {0, 1} ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
| 9 | 3, 7, 8 | mp2an 692 | . . 3 ⊢ 𝐹:ℝ⟶ℝ |
| 10 | 9 | a1i 11 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶ℝ) |
| 11 | prfi 9281 | . . 3 ⊢ {0, 1} ∈ Fin | |
| 12 | 1ex 11177 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 13 | 12 | prid2 4730 | . . . . . . 7 ⊢ 1 ∈ {0, 1} |
| 14 | c0ex 11175 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 15 | 14 | prid1 4729 | . . . . . . 7 ⊢ 0 ∈ {0, 1} |
| 16 | 13, 15 | ifcli 4539 | . . . . . 6 ⊢ if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1} |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 1, 0) ∈ {0, 1}) |
| 18 | 17, 1 | fmptd 7089 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹:ℝ⟶{0, 1}) |
| 19 | frn 6698 | . . . 4 ⊢ (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1}) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ⊆ {0, 1}) |
| 21 | ssfi 9143 | . . 3 ⊢ (({0, 1} ∈ Fin ∧ ran 𝐹 ⊆ {0, 1}) → ran 𝐹 ∈ Fin) | |
| 22 | 11, 20, 21 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → ran 𝐹 ∈ Fin) |
| 23 | 3, 19 | ax-mp 5 | . . . . . . . . . . 11 ⊢ ran 𝐹 ⊆ {0, 1} |
| 24 | df-pr 4595 | . . . . . . . . . . . 12 ⊢ {0, 1} = ({0} ∪ {1}) | |
| 25 | 24 | equncomi 4126 | . . . . . . . . . . 11 ⊢ {0, 1} = ({1} ∪ {0}) |
| 26 | 23, 25 | sseqtri 3998 | . . . . . . . . . 10 ⊢ ran 𝐹 ⊆ ({1} ∪ {0}) |
| 27 | ssdif 4110 | . . . . . . . . . 10 ⊢ (ran 𝐹 ⊆ ({1} ∪ {0}) → (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0})) | |
| 28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (ran 𝐹 ∖ {0}) ⊆ (({1} ∪ {0}) ∖ {0}) |
| 29 | difun2 4447 | . . . . . . . . . 10 ⊢ (({1} ∪ {0}) ∖ {0}) = ({1} ∖ {0}) | |
| 30 | difss 4102 | . . . . . . . . . 10 ⊢ ({1} ∖ {0}) ⊆ {1} | |
| 31 | 29, 30 | eqsstri 3996 | . . . . . . . . 9 ⊢ (({1} ∪ {0}) ∖ {0}) ⊆ {1} |
| 32 | 28, 31 | sstri 3959 | . . . . . . . 8 ⊢ (ran 𝐹 ∖ {0}) ⊆ {1} |
| 33 | 32 | sseli 3945 | . . . . . . 7 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ∈ {1}) |
| 34 | elsni 4609 | . . . . . . 7 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
| 35 | 33, 34 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 = 1) |
| 36 | 35 | sneqd 4604 | . . . . 5 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → {𝑦} = {1}) |
| 37 | 36 | imaeq2d 6034 | . . . 4 ⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → (◡𝐹 “ {𝑦}) = (◡𝐹 “ {1})) |
| 38 | 2 | simpri 485 | . . . . 5 ⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (◡𝐹 “ {1}) = 𝐴) |
| 40 | 37, 39 | sylan9eqr 2787 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = 𝐴) |
| 41 | simpll 766 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ dom vol) | |
| 42 | 40, 41 | eqeltrd 2829 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 43 | 40 | fveq2d 6865 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘𝐴)) |
| 44 | simplr 768 | . . 3 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘𝐴) ∈ ℝ) | |
| 45 | 43, 44 | eqeltrd 2829 | . 2 ⊢ (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) ∈ ℝ) |
| 46 | 10, 22, 42, 45 | i1fd 25589 | 1 ⊢ ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 ifcif 4491 {csn 4592 {cpr 4594 ↦ cmpt 5191 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ⟶wf 6510 ‘cfv 6514 Fincfn 8921 ℝcr 11074 0cc0 11075 1c1 11076 volcvol 25371 ∫1citg1 25523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 |
| This theorem is referenced by: itg11 25599 itg2const 25648 itg2addnclem 37672 |
| Copyright terms: Public domain | W3C validator |