MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem6 Structured version   Visualization version   GIF version

Theorem ruclem6 15425
Description: Lemma for ruc 15433. Domain and range of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem6 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem6
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6546 . . . . . 6 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 11846 . . . . . . 7 0 ∈ ℤ
4 seq1 13236 . . . . . . 7 (0 ∈ ℤ → (seq0(𝐷, 𝐶)‘0) = (𝐶‘0))
53, 4ax-mp 5 . . . . . 6 (seq0(𝐷, 𝐶)‘0) = (𝐶‘0)
62, 5eqtri 2821 . . . . 5 (𝐺‘0) = (𝐶‘0)
7 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
8 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
9 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
107, 8, 9, 1ruclem4 15424 . . . . 5 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
116, 10syl5eqr 2847 . . . 4 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
12 0re 10496 . . . . 5 0 ∈ ℝ
13 1re 10494 . . . . 5 1 ∈ ℝ
14 opelxpi 5487 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ⟨0, 1⟩ ∈ (ℝ × ℝ))
1512, 13, 14mp2an 688 . . . 4 ⟨0, 1⟩ ∈ (ℝ × ℝ)
1611, 15syl6eqel 2893 . . 3 (𝜑 → (𝐶‘0) ∈ (ℝ × ℝ))
17 1st2nd2 7591 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1817ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1918oveq1d 7038 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
207adantr 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐹:ℕ⟶ℝ)
218adantr 481 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
22 xp1st 7584 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
2322ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (1st𝑧) ∈ ℝ)
24 xp2nd 7585 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
2524ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (2nd𝑧) ∈ ℝ)
26 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
27 eqid 2797 . . . . . 6 (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
28 eqid 2797 . . . . . 6 (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
2920, 21, 23, 25, 26, 27, 28ruclem1 15421 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → ((⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ) ∧ (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (1st𝑧), (((((1st𝑧) + (2nd𝑧)) / 2) + (2nd𝑧)) / 2)) ∧ (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (((1st𝑧) + (2nd𝑧)) / 2), (2nd𝑧))))
3029simp1d 1135 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ))
3119, 30eqeltrd 2885 . . 3 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) ∈ (ℝ × ℝ))
32 nn0uz 12133 . . 3 0 = (ℤ‘0)
33 0zd 11847 . . 3 (𝜑 → 0 ∈ ℤ)
34 0p1e1 11613 . . . . . . 7 (0 + 1) = 1
3534fveq2i 6548 . . . . . 6 (ℤ‘(0 + 1)) = (ℤ‘1)
36 nnuz 12134 . . . . . 6 ℕ = (ℤ‘1)
3735, 36eqtr4i 2824 . . . . 5 (ℤ‘(0 + 1)) = ℕ
3837eleq2i 2876 . . . 4 (𝑧 ∈ (ℤ‘(0 + 1)) ↔ 𝑧 ∈ ℕ)
399equncomi 4058 . . . . . . . 8 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
4039fveq1i 6546 . . . . . . 7 (𝐶𝑧) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧)
41 nnne0 11525 . . . . . . . . 9 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
4241necomd 3041 . . . . . . . 8 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
43 fvunsn 6811 . . . . . . . 8 (0 ≠ 𝑧 → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4442, 43syl 17 . . . . . . 7 (𝑧 ∈ ℕ → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4540, 44syl5eq 2845 . . . . . 6 (𝑧 ∈ ℕ → (𝐶𝑧) = (𝐹𝑧))
4645adantl 482 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) = (𝐹𝑧))
477ffvelrnda 6723 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℝ)
4846, 47eqeltrd 2885 . . . 4 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) ∈ ℝ)
4938, 48sylan2b 593 . . 3 ((𝜑𝑧 ∈ (ℤ‘(0 + 1))) → (𝐶𝑧) ∈ ℝ)
5016, 31, 32, 33, 49seqf2 13243 . 2 (𝜑 → seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
511feq1i 6380 . 2 (𝐺:ℕ0⟶(ℝ × ℝ) ↔ seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
5250, 51sylibr 235 1 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wne 2986  csb 3817  cun 3863  ifcif 4387  {csn 4478  cop 4484   class class class wbr 4968   × cxp 5448  wf 6228  cfv 6232  (class class class)co 7023  cmpo 7025  1st c1st 7550  2nd c2nd 7551  cr 10389  0cc0 10390  1c1 10391   + caddc 10393   < clt 10528   / cdiv 11151  cn 11492  2c2 11546  0cn0 11751  cz 11835  cuz 12097  seqcseq 13223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-seq 13224
This theorem is referenced by:  ruclem8  15427  ruclem9  15428  ruclem10  15429  ruclem11  15430  ruclem12  15431
  Copyright terms: Public domain W3C validator