MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem6 Structured version   Visualization version   GIF version

Theorem ruclem6 16267
Description: Lemma for ruc 16275. Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem6 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem6
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6907 . . . . . 6 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 12621 . . . . . . 7 0 ∈ ℤ
4 seq1 14051 . . . . . . 7 (0 ∈ ℤ → (seq0(𝐷, 𝐶)‘0) = (𝐶‘0))
53, 4ax-mp 5 . . . . . 6 (seq0(𝐷, 𝐶)‘0) = (𝐶‘0)
62, 5eqtri 2762 . . . . 5 (𝐺‘0) = (𝐶‘0)
7 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
8 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
9 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
107, 8, 9, 1ruclem4 16266 . . . . 5 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
116, 10eqtr3id 2788 . . . 4 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
12 0re 11260 . . . . 5 0 ∈ ℝ
13 1re 11258 . . . . 5 1 ∈ ℝ
14 opelxpi 5725 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ⟨0, 1⟩ ∈ (ℝ × ℝ))
1512, 13, 14mp2an 692 . . . 4 ⟨0, 1⟩ ∈ (ℝ × ℝ)
1611, 15eqeltrdi 2846 . . 3 (𝜑 → (𝐶‘0) ∈ (ℝ × ℝ))
17 1st2nd2 8051 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1817ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1918oveq1d 7445 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
207adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐹:ℕ⟶ℝ)
218adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
22 xp1st 8044 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
2322ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (1st𝑧) ∈ ℝ)
24 xp2nd 8045 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
2524ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (2nd𝑧) ∈ ℝ)
26 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
27 eqid 2734 . . . . . 6 (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
28 eqid 2734 . . . . . 6 (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
2920, 21, 23, 25, 26, 27, 28ruclem1 16263 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → ((⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ) ∧ (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (1st𝑧), (((((1st𝑧) + (2nd𝑧)) / 2) + (2nd𝑧)) / 2)) ∧ (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (((1st𝑧) + (2nd𝑧)) / 2), (2nd𝑧))))
3029simp1d 1141 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ))
3119, 30eqeltrd 2838 . . 3 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) ∈ (ℝ × ℝ))
32 nn0uz 12917 . . 3 0 = (ℤ‘0)
33 0zd 12622 . . 3 (𝜑 → 0 ∈ ℤ)
34 0p1e1 12385 . . . . . . 7 (0 + 1) = 1
3534fveq2i 6909 . . . . . 6 (ℤ‘(0 + 1)) = (ℤ‘1)
36 nnuz 12918 . . . . . 6 ℕ = (ℤ‘1)
3735, 36eqtr4i 2765 . . . . 5 (ℤ‘(0 + 1)) = ℕ
3837eleq2i 2830 . . . 4 (𝑧 ∈ (ℤ‘(0 + 1)) ↔ 𝑧 ∈ ℕ)
399equncomi 4169 . . . . . . . 8 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
4039fveq1i 6907 . . . . . . 7 (𝐶𝑧) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧)
41 nnne0 12297 . . . . . . . . 9 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
4241necomd 2993 . . . . . . . 8 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
43 fvunsn 7198 . . . . . . . 8 (0 ≠ 𝑧 → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4442, 43syl 17 . . . . . . 7 (𝑧 ∈ ℕ → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4540, 44eqtrid 2786 . . . . . 6 (𝑧 ∈ ℕ → (𝐶𝑧) = (𝐹𝑧))
4645adantl 481 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) = (𝐹𝑧))
477ffvelcdmda 7103 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℝ)
4846, 47eqeltrd 2838 . . . 4 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) ∈ ℝ)
4938, 48sylan2b 594 . . 3 ((𝜑𝑧 ∈ (ℤ‘(0 + 1))) → (𝐶𝑧) ∈ ℝ)
5016, 31, 32, 33, 49seqf2 14058 . 2 (𝜑 → seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
511feq1i 6727 . 2 (𝐺:ℕ0⟶(ℝ × ℝ) ↔ seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
5250, 51sylibr 234 1 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  csb 3907  cun 3960  ifcif 4530  {csn 4630  cop 4636   class class class wbr 5147   × cxp 5686  wf 6558  cfv 6562  (class class class)co 7430  cmpo 7432  1st c1st 8010  2nd c2nd 8011  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  seqcseq 14038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-seq 14039
This theorem is referenced by:  ruclem8  16269  ruclem9  16270  ruclem10  16271  ruclem11  16272  ruclem12  16273
  Copyright terms: Public domain W3C validator