MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem6 Structured version   Visualization version   GIF version

Theorem ruclem6 16210
Description: Lemma for ruc 16218. Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem6 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem6
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6862 . . . . . 6 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 12547 . . . . . . 7 0 ∈ ℤ
4 seq1 13986 . . . . . . 7 (0 ∈ ℤ → (seq0(𝐷, 𝐶)‘0) = (𝐶‘0))
53, 4ax-mp 5 . . . . . 6 (seq0(𝐷, 𝐶)‘0) = (𝐶‘0)
62, 5eqtri 2753 . . . . 5 (𝐺‘0) = (𝐶‘0)
7 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
8 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
9 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
107, 8, 9, 1ruclem4 16209 . . . . 5 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
116, 10eqtr3id 2779 . . . 4 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
12 0re 11183 . . . . 5 0 ∈ ℝ
13 1re 11181 . . . . 5 1 ∈ ℝ
14 opelxpi 5678 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ⟨0, 1⟩ ∈ (ℝ × ℝ))
1512, 13, 14mp2an 692 . . . 4 ⟨0, 1⟩ ∈ (ℝ × ℝ)
1611, 15eqeltrdi 2837 . . 3 (𝜑 → (𝐶‘0) ∈ (ℝ × ℝ))
17 1st2nd2 8010 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1817ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1918oveq1d 7405 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
207adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐹:ℕ⟶ℝ)
218adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
22 xp1st 8003 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
2322ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (1st𝑧) ∈ ℝ)
24 xp2nd 8004 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
2524ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (2nd𝑧) ∈ ℝ)
26 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
27 eqid 2730 . . . . . 6 (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
28 eqid 2730 . . . . . 6 (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
2920, 21, 23, 25, 26, 27, 28ruclem1 16206 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → ((⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ) ∧ (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (1st𝑧), (((((1st𝑧) + (2nd𝑧)) / 2) + (2nd𝑧)) / 2)) ∧ (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (((1st𝑧) + (2nd𝑧)) / 2), (2nd𝑧))))
3029simp1d 1142 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ))
3119, 30eqeltrd 2829 . . 3 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) ∈ (ℝ × ℝ))
32 nn0uz 12842 . . 3 0 = (ℤ‘0)
33 0zd 12548 . . 3 (𝜑 → 0 ∈ ℤ)
34 0p1e1 12310 . . . . . . 7 (0 + 1) = 1
3534fveq2i 6864 . . . . . 6 (ℤ‘(0 + 1)) = (ℤ‘1)
36 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
3735, 36eqtr4i 2756 . . . . 5 (ℤ‘(0 + 1)) = ℕ
3837eleq2i 2821 . . . 4 (𝑧 ∈ (ℤ‘(0 + 1)) ↔ 𝑧 ∈ ℕ)
399equncomi 4126 . . . . . . . 8 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
4039fveq1i 6862 . . . . . . 7 (𝐶𝑧) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧)
41 nnne0 12227 . . . . . . . . 9 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
4241necomd 2981 . . . . . . . 8 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
43 fvunsn 7156 . . . . . . . 8 (0 ≠ 𝑧 → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4442, 43syl 17 . . . . . . 7 (𝑧 ∈ ℕ → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4540, 44eqtrid 2777 . . . . . 6 (𝑧 ∈ ℕ → (𝐶𝑧) = (𝐹𝑧))
4645adantl 481 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) = (𝐹𝑧))
477ffvelcdmda 7059 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℝ)
4846, 47eqeltrd 2829 . . . 4 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) ∈ ℝ)
4938, 48sylan2b 594 . . 3 ((𝜑𝑧 ∈ (ℤ‘(0 + 1))) → (𝐶𝑧) ∈ ℝ)
5016, 31, 32, 33, 49seqf2 13993 . 2 (𝜑 → seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
511feq1i 6682 . 2 (𝐺:ℕ0⟶(ℝ × ℝ) ↔ seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
5250, 51sylibr 234 1 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  csb 3865  cun 3915  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974
This theorem is referenced by:  ruclem8  16212  ruclem9  16213  ruclem10  16214  ruclem11  16215  ruclem12  16216
  Copyright terms: Public domain W3C validator