MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem6 Structured version   Visualization version   GIF version

Theorem ruclem6 15872
Description: Lemma for ruc 15880. Domain and range of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem6 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem6
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ruc.5 . . . . . . 7 𝐺 = seq0(𝐷, 𝐶)
21fveq1i 6757 . . . . . 6 (𝐺‘0) = (seq0(𝐷, 𝐶)‘0)
3 0z 12260 . . . . . . 7 0 ∈ ℤ
4 seq1 13662 . . . . . . 7 (0 ∈ ℤ → (seq0(𝐷, 𝐶)‘0) = (𝐶‘0))
53, 4ax-mp 5 . . . . . 6 (seq0(𝐷, 𝐶)‘0) = (𝐶‘0)
62, 5eqtri 2766 . . . . 5 (𝐺‘0) = (𝐶‘0)
7 ruc.1 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
8 ruc.2 . . . . . 6 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
9 ruc.4 . . . . . 6 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
107, 8, 9, 1ruclem4 15871 . . . . 5 (𝜑 → (𝐺‘0) = ⟨0, 1⟩)
116, 10eqtr3id 2793 . . . 4 (𝜑 → (𝐶‘0) = ⟨0, 1⟩)
12 0re 10908 . . . . 5 0 ∈ ℝ
13 1re 10906 . . . . 5 1 ∈ ℝ
14 opelxpi 5617 . . . . 5 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ⟨0, 1⟩ ∈ (ℝ × ℝ))
1512, 13, 14mp2an 688 . . . 4 ⟨0, 1⟩ ∈ (ℝ × ℝ)
1611, 15eqeltrdi 2847 . . 3 (𝜑 → (𝐶‘0) ∈ (ℝ × ℝ))
17 1st2nd2 7843 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1817ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1918oveq1d 7270 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) = (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
207adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐹:ℕ⟶ℝ)
218adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
22 xp1st 7836 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
2322ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (1st𝑧) ∈ ℝ)
24 xp2nd 7837 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
2524ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (2nd𝑧) ∈ ℝ)
26 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
27 eqid 2738 . . . . . 6 (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
28 eqid 2738 . . . . . 6 (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤))
2920, 21, 23, 25, 26, 27, 28ruclem1 15868 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → ((⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ) ∧ (1st ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (1st𝑧), (((((1st𝑧) + (2nd𝑧)) / 2) + (2nd𝑧)) / 2)) ∧ (2nd ‘(⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤)) = if((((1st𝑧) + (2nd𝑧)) / 2) < 𝑤, (((1st𝑧) + (2nd𝑧)) / 2), (2nd𝑧))))
3029simp1d 1140 . . . 4 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (⟨(1st𝑧), (2nd𝑧)⟩𝐷𝑤) ∈ (ℝ × ℝ))
3119, 30eqeltrd 2839 . . 3 ((𝜑 ∧ (𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ ℝ)) → (𝑧𝐷𝑤) ∈ (ℝ × ℝ))
32 nn0uz 12549 . . 3 0 = (ℤ‘0)
33 0zd 12261 . . 3 (𝜑 → 0 ∈ ℤ)
34 0p1e1 12025 . . . . . . 7 (0 + 1) = 1
3534fveq2i 6759 . . . . . 6 (ℤ‘(0 + 1)) = (ℤ‘1)
36 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
3735, 36eqtr4i 2769 . . . . 5 (ℤ‘(0 + 1)) = ℕ
3837eleq2i 2830 . . . 4 (𝑧 ∈ (ℤ‘(0 + 1)) ↔ 𝑧 ∈ ℕ)
399equncomi 4085 . . . . . . . 8 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
4039fveq1i 6757 . . . . . . 7 (𝐶𝑧) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧)
41 nnne0 11937 . . . . . . . . 9 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
4241necomd 2998 . . . . . . . 8 (𝑧 ∈ ℕ → 0 ≠ 𝑧)
43 fvunsn 7033 . . . . . . . 8 (0 ≠ 𝑧 → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4442, 43syl 17 . . . . . . 7 (𝑧 ∈ ℕ → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘𝑧) = (𝐹𝑧))
4540, 44eqtrid 2790 . . . . . 6 (𝑧 ∈ ℕ → (𝐶𝑧) = (𝐹𝑧))
4645adantl 481 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) = (𝐹𝑧))
477ffvelrnda 6943 . . . . 5 ((𝜑𝑧 ∈ ℕ) → (𝐹𝑧) ∈ ℝ)
4846, 47eqeltrd 2839 . . . 4 ((𝜑𝑧 ∈ ℕ) → (𝐶𝑧) ∈ ℝ)
4938, 48sylan2b 593 . . 3 ((𝜑𝑧 ∈ (ℤ‘(0 + 1))) → (𝐶𝑧) ∈ ℝ)
5016, 31, 32, 33, 49seqf2 13670 . 2 (𝜑 → seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
511feq1i 6575 . 2 (𝐺:ℕ0⟶(ℝ × ℝ) ↔ seq0(𝐷, 𝐶):ℕ0⟶(ℝ × ℝ))
5250, 51sylibr 233 1 (𝜑𝐺:ℕ0⟶(ℝ × ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  csb 3828  cun 3881  ifcif 4456  {csn 4558  cop 4564   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650
This theorem is referenced by:  ruclem8  15874  ruclem9  15875  ruclem10  15876  ruclem11  15877  ruclem12  15878
  Copyright terms: Public domain W3C validator