| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruclem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for ruc 16279. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
| Ref | Expression |
|---|---|
| ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
| ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
| ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
| Ref | Expression |
|---|---|
| ruclem7 | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 2 | nn0uz 12920 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 3 | 1, 2 | eleqtrdi 2851 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘0)) |
| 4 | seqp1 14057 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))) |
| 6 | ruc.5 | . . . 4 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
| 7 | 6 | fveq1i 6907 | . . 3 ⊢ (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1)) |
| 8 | 6 | fveq1i 6907 | . . . 4 ⊢ (𝐺‘𝑁) = (seq0(𝐷, 𝐶)‘𝑁) |
| 9 | 8 | oveq1i 7441 | . . 3 ⊢ ((𝐺‘𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))) |
| 10 | 5, 7, 9 | 3eqtr4g 2802 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐶‘(𝑁 + 1)))) |
| 11 | nn0p1nn 12565 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ) |
| 13 | 12 | nnne0d 12316 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0) |
| 14 | 13 | necomd 2996 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1)) |
| 15 | ruc.4 | . . . . . . 7 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
| 16 | 15 | equncomi 4160 | . . . . . 6 ⊢ 𝐶 = (𝐹 ∪ {〈0, 〈0, 1〉〉}) |
| 17 | 16 | fveq1i 6907 | . . . . 5 ⊢ (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {〈0, 〈0, 1〉〉})‘(𝑁 + 1)) |
| 18 | fvunsn 7199 | . . . . 5 ⊢ (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {〈0, 〈0, 1〉〉})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) | |
| 19 | 17, 18 | eqtrid 2789 | . . . 4 ⊢ (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) |
| 20 | 14, 19 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) |
| 21 | 20 | oveq2d 7447 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) |
| 22 | 10, 21 | eqtrd 2777 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ⦋csb 3899 ∪ cun 3949 ifcif 4525 {csn 4626 〈cop 4632 class class class wbr 5143 × cxp 5683 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1st c1st 8012 2nd c2nd 8013 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 / cdiv 11920 ℕcn 12266 2c2 12321 ℕ0cn0 12526 ℤ≥cuz 12878 seqcseq 14042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 |
| This theorem is referenced by: ruclem8 16273 ruclem9 16274 ruclem12 16277 |
| Copyright terms: Public domain | W3C validator |