![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruclem7 | Structured version Visualization version GIF version |
Description: Lemma for ruc 16186. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | β’ (π β πΉ:ββΆβ) |
ruc.2 | β’ (π β π· = (π₯ β (β Γ β), π¦ β β β¦ β¦(((1st βπ₯) + (2nd βπ₯)) / 2) / πβ¦if(π < π¦, β¨(1st βπ₯), πβ©, β¨((π + (2nd βπ₯)) / 2), (2nd βπ₯)β©))) |
ruc.4 | β’ πΆ = ({β¨0, β¨0, 1β©β©} βͺ πΉ) |
ruc.5 | β’ πΊ = seq0(π·, πΆ) |
Ref | Expression |
---|---|
ruclem7 | β’ ((π β§ π β β0) β (πΊβ(π + 1)) = ((πΊβπ)π·(πΉβ(π + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . 5 β’ ((π β§ π β β0) β π β β0) | |
2 | nn0uz 12864 | . . . . 5 β’ β0 = (β€β₯β0) | |
3 | 1, 2 | eleqtrdi 2844 | . . . 4 β’ ((π β§ π β β0) β π β (β€β₯β0)) |
4 | seqp1 13981 | . . . 4 β’ (π β (β€β₯β0) β (seq0(π·, πΆ)β(π + 1)) = ((seq0(π·, πΆ)βπ)π·(πΆβ(π + 1)))) | |
5 | 3, 4 | syl 17 | . . 3 β’ ((π β§ π β β0) β (seq0(π·, πΆ)β(π + 1)) = ((seq0(π·, πΆ)βπ)π·(πΆβ(π + 1)))) |
6 | ruc.5 | . . . 4 β’ πΊ = seq0(π·, πΆ) | |
7 | 6 | fveq1i 6893 | . . 3 β’ (πΊβ(π + 1)) = (seq0(π·, πΆ)β(π + 1)) |
8 | 6 | fveq1i 6893 | . . . 4 β’ (πΊβπ) = (seq0(π·, πΆ)βπ) |
9 | 8 | oveq1i 7419 | . . 3 β’ ((πΊβπ)π·(πΆβ(π + 1))) = ((seq0(π·, πΆ)βπ)π·(πΆβ(π + 1))) |
10 | 5, 7, 9 | 3eqtr4g 2798 | . 2 β’ ((π β§ π β β0) β (πΊβ(π + 1)) = ((πΊβπ)π·(πΆβ(π + 1)))) |
11 | nn0p1nn 12511 | . . . . . . 7 β’ (π β β0 β (π + 1) β β) | |
12 | 11 | adantl 483 | . . . . . 6 β’ ((π β§ π β β0) β (π + 1) β β) |
13 | 12 | nnne0d 12262 | . . . . 5 β’ ((π β§ π β β0) β (π + 1) β 0) |
14 | 13 | necomd 2997 | . . . 4 β’ ((π β§ π β β0) β 0 β (π + 1)) |
15 | ruc.4 | . . . . . . 7 β’ πΆ = ({β¨0, β¨0, 1β©β©} βͺ πΉ) | |
16 | 15 | equncomi 4156 | . . . . . 6 β’ πΆ = (πΉ βͺ {β¨0, β¨0, 1β©β©}) |
17 | 16 | fveq1i 6893 | . . . . 5 β’ (πΆβ(π + 1)) = ((πΉ βͺ {β¨0, β¨0, 1β©β©})β(π + 1)) |
18 | fvunsn 7177 | . . . . 5 β’ (0 β (π + 1) β ((πΉ βͺ {β¨0, β¨0, 1β©β©})β(π + 1)) = (πΉβ(π + 1))) | |
19 | 17, 18 | eqtrid 2785 | . . . 4 β’ (0 β (π + 1) β (πΆβ(π + 1)) = (πΉβ(π + 1))) |
20 | 14, 19 | syl 17 | . . 3 β’ ((π β§ π β β0) β (πΆβ(π + 1)) = (πΉβ(π + 1))) |
21 | 20 | oveq2d 7425 | . 2 β’ ((π β§ π β β0) β ((πΊβπ)π·(πΆβ(π + 1))) = ((πΊβπ)π·(πΉβ(π + 1)))) |
22 | 10, 21 | eqtrd 2773 | 1 β’ ((π β§ π β β0) β (πΊβ(π + 1)) = ((πΊβπ)π·(πΉβ(π + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 β¦csb 3894 βͺ cun 3947 ifcif 4529 {csn 4629 β¨cop 4635 class class class wbr 5149 Γ cxp 5675 βΆwf 6540 βcfv 6544 (class class class)co 7409 β cmpo 7411 1st c1st 7973 2nd c2nd 7974 βcr 11109 0cc0 11110 1c1 11111 + caddc 11113 < clt 11248 / cdiv 11871 βcn 12212 2c2 12267 β0cn0 12472 β€β₯cuz 12822 seqcseq 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-seq 13967 |
This theorem is referenced by: ruclem8 16180 ruclem9 16181 ruclem12 16184 |
Copyright terms: Public domain | W3C validator |