MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem7 Structured version   Visualization version   GIF version

Theorem ruclem7 16211
Description: Lemma for ruc 16218. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem7 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem7
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 12842 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2839 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 13988 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
6 ruc.5 . . . 4 𝐺 = seq0(𝐷, 𝐶)
76fveq1i 6862 . . 3 (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1))
86fveq1i 6862 . . . 4 (𝐺𝑁) = (seq0(𝐷, 𝐶)‘𝑁)
98oveq1i 7400 . . 3 ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))
105, 7, 93eqtr4g 2790 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))))
11 nn0p1nn 12488 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1211adantl 481 . . . . . 6 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
1312nnne0d 12243 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0)
1413necomd 2981 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1))
15 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
1615equncomi 4126 . . . . . 6 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
1716fveq1i 6862 . . . . 5 (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1))
18 fvunsn 7156 . . . . 5 (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
1917, 18eqtrid 2777 . . . 4 (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2014, 19syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2120oveq2d 7406 . 2 ((𝜑𝑁 ∈ ℕ0) → ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
2210, 21eqtrd 2765 1 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  csb 3865  cun 3915  ifcif 4491  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cuz 12800  seqcseq 13973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974
This theorem is referenced by:  ruclem8  16212  ruclem9  16213  ruclem12  16216
  Copyright terms: Public domain W3C validator