MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem7 Structured version   Visualization version   GIF version

Theorem ruclem7 16145
Description: Lemma for ruc 16152. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruc.4 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
ruc.5 𝐺 = seq0(𝐷, 𝐶)
Assertion
Ref Expression
ruclem7 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑚,𝐺,𝑥,𝑦   𝑚,𝑁,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐶(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)

Proof of Theorem ruclem7
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 12777 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2838 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 13923 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))))
6 ruc.5 . . . 4 𝐺 = seq0(𝐷, 𝐶)
76fveq1i 6823 . . 3 (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1))
86fveq1i 6823 . . . 4 (𝐺𝑁) = (seq0(𝐷, 𝐶)‘𝑁)
98oveq1i 7359 . . 3 ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))
105, 7, 93eqtr4g 2789 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))))
11 nn0p1nn 12423 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
1211adantl 481 . . . . . 6 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ)
1312nnne0d 12178 . . . . 5 ((𝜑𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0)
1413necomd 2980 . . . 4 ((𝜑𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1))
15 ruc.4 . . . . . . 7 𝐶 = ({⟨0, ⟨0, 1⟩⟩} ∪ 𝐹)
1615equncomi 4111 . . . . . 6 𝐶 = (𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})
1716fveq1i 6823 . . . . 5 (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1))
18 fvunsn 7115 . . . . 5 (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {⟨0, ⟨0, 1⟩⟩})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
1917, 18eqtrid 2776 . . . 4 (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2014, 19syl 17 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
2120oveq2d 7365 . 2 ((𝜑𝑁 ∈ ℕ0) → ((𝐺𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
2210, 21eqtrd 2764 1 ((𝜑𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺𝑁)𝐷(𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  csb 3851  cun 3901  ifcif 4476  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cuz 12735  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909
This theorem is referenced by:  ruclem8  16146  ruclem9  16147  ruclem12  16150
  Copyright terms: Public domain W3C validator