Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ruclem7 | Structured version Visualization version GIF version |
Description: Lemma for ruc 15880. Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
ruc.1 | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
ruc.2 | ⊢ (𝜑 → 𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ ⦋(((1st ‘𝑥) + (2nd ‘𝑥)) / 2) / 𝑚⦌if(𝑚 < 𝑦, 〈(1st ‘𝑥), 𝑚〉, 〈((𝑚 + (2nd ‘𝑥)) / 2), (2nd ‘𝑥)〉))) |
ruc.4 | ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) |
ruc.5 | ⊢ 𝐺 = seq0(𝐷, 𝐶) |
Ref | Expression |
---|---|
ruclem7 | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | nn0uz 12549 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 1, 2 | eleqtrdi 2849 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘0)) |
4 | seqp1 13664 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (seq0(𝐷, 𝐶)‘(𝑁 + 1)) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1)))) |
6 | ruc.5 | . . . 4 ⊢ 𝐺 = seq0(𝐷, 𝐶) | |
7 | 6 | fveq1i 6757 | . . 3 ⊢ (𝐺‘(𝑁 + 1)) = (seq0(𝐷, 𝐶)‘(𝑁 + 1)) |
8 | 6 | fveq1i 6757 | . . . 4 ⊢ (𝐺‘𝑁) = (seq0(𝐷, 𝐶)‘𝑁) |
9 | 8 | oveq1i 7265 | . . 3 ⊢ ((𝐺‘𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((seq0(𝐷, 𝐶)‘𝑁)𝐷(𝐶‘(𝑁 + 1))) |
10 | 5, 7, 9 | 3eqtr4g 2804 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐶‘(𝑁 + 1)))) |
11 | nn0p1nn 12202 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) | |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ) |
13 | 12 | nnne0d 11953 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≠ 0) |
14 | 13 | necomd 2998 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → 0 ≠ (𝑁 + 1)) |
15 | ruc.4 | . . . . . . 7 ⊢ 𝐶 = ({〈0, 〈0, 1〉〉} ∪ 𝐹) | |
16 | 15 | equncomi 4085 | . . . . . 6 ⊢ 𝐶 = (𝐹 ∪ {〈0, 〈0, 1〉〉}) |
17 | 16 | fveq1i 6757 | . . . . 5 ⊢ (𝐶‘(𝑁 + 1)) = ((𝐹 ∪ {〈0, 〈0, 1〉〉})‘(𝑁 + 1)) |
18 | fvunsn 7033 | . . . . 5 ⊢ (0 ≠ (𝑁 + 1) → ((𝐹 ∪ {〈0, 〈0, 1〉〉})‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) | |
19 | 17, 18 | eqtrid 2790 | . . . 4 ⊢ (0 ≠ (𝑁 + 1) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) |
20 | 14, 19 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐶‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) |
21 | 20 | oveq2d 7271 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((𝐺‘𝑁)𝐷(𝐶‘(𝑁 + 1))) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) |
22 | 10, 21 | eqtrd 2778 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝐺‘(𝑁 + 1)) = ((𝐺‘𝑁)𝐷(𝐹‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⦋csb 3828 ∪ cun 3881 ifcif 4456 {csn 4558 〈cop 4564 class class class wbr 5070 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤ≥cuz 12511 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 |
This theorem is referenced by: ruclem8 15874 ruclem9 15875 ruclem12 15878 |
Copyright terms: Public domain | W3C validator |