| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qliftel | Structured version Visualization version GIF version | ||
| Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| qliftel | ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 3 | qlift.3 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 4 | qlift.4 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | qliftlem 8774 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅)) |
| 6 | 1, 5, 2 | fliftel 7287 | . 2 ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 ([𝐶]𝑅 = [𝑥]𝑅 ∧ 𝐷 = 𝐴))) |
| 7 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑅 Er 𝑋) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 9 | 7, 8 | erth2 8729 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐶𝑅𝑥 ↔ [𝐶]𝑅 = [𝑥]𝑅)) |
| 10 | 9 | anbi1d 631 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶𝑅𝑥 ∧ 𝐷 = 𝐴) ↔ ([𝐶]𝑅 = [𝑥]𝑅 ∧ 𝐷 = 𝐴))) |
| 11 | 10 | rexbidva 3156 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 ([𝐶]𝑅 = [𝑥]𝑅 ∧ 𝐷 = 𝐴))) |
| 12 | 6, 11 | bitr4d 282 | 1 ⊢ (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥 ∈ 𝑋 (𝐶𝑅𝑥 ∧ 𝐷 = 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 〈cop 4598 class class class wbr 5110 ↦ cmpt 5191 ran crn 5642 Er wer 8671 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-er 8674 df-ec 8676 df-qs 8680 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |