MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftel Structured version   Visualization version   GIF version

Theorem qliftel 8773
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftel (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftel
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋𝑉)
51, 2, 3, 4qliftlem 8771 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftel 7284 . 2 (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
73adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑅 Er 𝑋)
8 simpr 484 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
97, 8erth2 8726 . . . 4 ((𝜑𝑥𝑋) → (𝐶𝑅𝑥 ↔ [𝐶]𝑅 = [𝑥]𝑅))
109anbi1d 631 . . 3 ((𝜑𝑥𝑋) → ((𝐶𝑅𝑥𝐷 = 𝐴) ↔ ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
1110rexbidva 3155 . 2 (𝜑 → (∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴) ↔ ∃𝑥𝑋 ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
126, 11bitr4d 282 1 (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cop 4595   class class class wbr 5107  cmpt 5188  ran crn 5639   Er wer 8668  [cec 8669   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-er 8671  df-ec 8673  df-qs 8677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator