MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftel Structured version   Visualization version   GIF version

Theorem qliftel 8823
Description: Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftel (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem qliftel
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋𝑉)
51, 2, 3, 4qliftlem 8821 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftel 7321 . 2 (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
73adantr 479 . . . . 5 ((𝜑𝑥𝑋) → 𝑅 Er 𝑋)
8 simpr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
97, 8erth2 8780 . . . 4 ((𝜑𝑥𝑋) → (𝐶𝑅𝑥 ↔ [𝐶]𝑅 = [𝑥]𝑅))
109anbi1d 629 . . 3 ((𝜑𝑥𝑋) → ((𝐶𝑅𝑥𝐷 = 𝐴) ↔ ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
1110rexbidva 3172 . 2 (𝜑 → (∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴) ↔ ∃𝑥𝑋 ([𝐶]𝑅 = [𝑥]𝑅𝐷 = 𝐴)))
126, 11bitr4d 281 1 (𝜑 → ([𝐶]𝑅𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶𝑅𝑥𝐷 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3066  cop 4636   class class class wbr 5150  cmpt 5233  ran crn 5681   Er wer 8726  [cec 8727   / cqs 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-er 8729  df-ec 8731  df-qs 8735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator