Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntmeas Structured version   Visualization version   GIF version

Theorem cntmeas 30887
Description: The Counting measure is a measure on any sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
cntmeas (𝑆 ran sigAlgebra → (♯ ↾ 𝑆) ∈ (measures‘𝑆))

Proof of Theorem cntmeas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashf2 30744 . . . 4 ♯:V⟶(0[,]+∞)
2 ssv 3844 . . . 4 𝑆 ⊆ V
3 fssres 6320 . . . 4 ((♯:V⟶(0[,]+∞) ∧ 𝑆 ⊆ V) → (♯ ↾ 𝑆):𝑆⟶(0[,]+∞))
41, 2, 3mp2an 682 . . 3 (♯ ↾ 𝑆):𝑆⟶(0[,]+∞)
54a1i 11 . 2 (𝑆 ran sigAlgebra → (♯ ↾ 𝑆):𝑆⟶(0[,]+∞))
6 0elsiga 30775 . . . 4 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
7 fvres 6465 . . . 4 (∅ ∈ 𝑆 → ((♯ ↾ 𝑆)‘∅) = (♯‘∅))
86, 7syl 17 . . 3 (𝑆 ran sigAlgebra → ((♯ ↾ 𝑆)‘∅) = (♯‘∅))
9 hash0 13473 . . 3 (♯‘∅) = 0
108, 9syl6eq 2830 . 2 (𝑆 ran sigAlgebra → ((♯ ↾ 𝑆)‘∅) = 0)
11 vex 3401 . . . . . . 7 𝑥 ∈ V
12 hasheuni 30745 . . . . . . 7 ((𝑥 ∈ V ∧ Disj 𝑦𝑥 𝑦) → (♯‘ 𝑥) = Σ*𝑦𝑥(♯‘𝑦))
1311, 12mpan 680 . . . . . 6 (Disj 𝑦𝑥 𝑦 → (♯‘ 𝑥) = Σ*𝑦𝑥(♯‘𝑦))
1413ad2antll 719 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (♯‘ 𝑥) = Σ*𝑦𝑥(♯‘𝑦))
15 isrnsigau 30788 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → (𝑆 ⊆ 𝒫 𝑆 ∧ ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
1615simprd 491 . . . . . . . . . 10 (𝑆 ran sigAlgebra → ( 𝑆𝑆 ∧ ∀𝑥𝑆 ( 𝑆𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
1716simp3d 1135 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))
18 fvres 6465 . . . . . . . . . . 11 ( 𝑥𝑆 → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥))
1918imim2i 16 . . . . . . . . . 10 ((𝑥 ≼ ω → 𝑥𝑆) → (𝑥 ≼ ω → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥)))
2019ralimi 3134 . . . . . . . . 9 (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥)))
2117, 20syl 17 . . . . . . . 8 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥)))
2221r19.21bi 3114 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) → (𝑥 ≼ ω → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥)))
2322imp 397 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω) → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥))
2423adantrr 707 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((♯ ↾ 𝑆)‘ 𝑥) = (♯‘ 𝑥))
25 elpwi 4389 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
2625sseld 3820 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑆 → (𝑦𝑥𝑦𝑆))
27 fvres 6465 . . . . . . . . 9 (𝑦𝑆 → ((♯ ↾ 𝑆)‘𝑦) = (♯‘𝑦))
2826, 27syl6 35 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑆 → (𝑦𝑥 → ((♯ ↾ 𝑆)‘𝑦) = (♯‘𝑦)))
2928imp 397 . . . . . . 7 ((𝑥 ∈ 𝒫 𝑆𝑦𝑥) → ((♯ ↾ 𝑆)‘𝑦) = (♯‘𝑦))
3029esumeq2dv 30698 . . . . . 6 (𝑥 ∈ 𝒫 𝑆 → Σ*𝑦𝑥((♯ ↾ 𝑆)‘𝑦) = Σ*𝑦𝑥(♯‘𝑦))
3130ad2antlr 717 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → Σ*𝑦𝑥((♯ ↾ 𝑆)‘𝑦) = Σ*𝑦𝑥(♯‘𝑦))
3214, 24, 313eqtr4d 2824 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ((♯ ↾ 𝑆)‘ 𝑥) = Σ*𝑦𝑥((♯ ↾ 𝑆)‘𝑦))
3332ex 403 . . 3 ((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((♯ ↾ 𝑆)‘ 𝑥) = Σ*𝑦𝑥((♯ ↾ 𝑆)‘𝑦)))
3433ralrimiva 3148 . 2 (𝑆 ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((♯ ↾ 𝑆)‘ 𝑥) = Σ*𝑦𝑥((♯ ↾ 𝑆)‘𝑦)))
35 ismeas 30860 . 2 (𝑆 ran sigAlgebra → ((♯ ↾ 𝑆) ∈ (measures‘𝑆) ↔ ((♯ ↾ 𝑆):𝑆⟶(0[,]+∞) ∧ ((♯ ↾ 𝑆)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → ((♯ ↾ 𝑆)‘ 𝑥) = Σ*𝑦𝑥((♯ ↾ 𝑆)‘𝑦)))))
365, 10, 34, 35mpbir3and 1399 1 (𝑆 ran sigAlgebra → (♯ ↾ 𝑆) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  cdif 3789  wss 3792  c0 4141  𝒫 cpw 4379   cuni 4671  Disj wdisj 4854   class class class wbr 4886  ran crn 5356  cres 5357  wf 6131  cfv 6135  (class class class)co 6922  ωcom 7343  cdom 8239  0cc0 10272  +∞cpnf 10408  [,]cicc 12490  chash 13435  Σ*cesum 30687  sigAlgebracsiga 30768  measurescmeas 30856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-ordt 16547  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-ps 17586  df-tsr 17587  df-plusf 17627  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-subrg 19170  df-abv 19209  df-lmod 19257  df-scaf 19258  df-sra 19569  df-rgmod 19570  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-tmd 22284  df-tgp 22285  df-tsms 22338  df-trg 22371  df-xms 22533  df-ms 22534  df-tms 22535  df-nm 22795  df-ngp 22796  df-nrg 22798  df-nlm 22799  df-ii 23088  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-esum 30688  df-siga 30769  df-meas 30857
This theorem is referenced by:  pwcntmeas  30888
  Copyright terms: Public domain W3C validator