| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntmeas | Structured version Visualization version GIF version | ||
| Description: The Counting measure is a measure on any sigma-algebra. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| cntmeas | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (♯ ↾ 𝑆) ∈ (measures‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf2 34057 | . . . 4 ⊢ ♯:V⟶(0[,]+∞) | |
| 2 | ssv 3960 | . . . 4 ⊢ 𝑆 ⊆ V | |
| 3 | fssres 6690 | . . . 4 ⊢ ((♯:V⟶(0[,]+∞) ∧ 𝑆 ⊆ V) → (♯ ↾ 𝑆):𝑆⟶(0[,]+∞)) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (♯ ↾ 𝑆):𝑆⟶(0[,]+∞) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (♯ ↾ 𝑆):𝑆⟶(0[,]+∞)) |
| 6 | 0elsiga 34087 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) | |
| 7 | fvres 6841 | . . . 4 ⊢ (∅ ∈ 𝑆 → ((♯ ↾ 𝑆)‘∅) = (♯‘∅)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((♯ ↾ 𝑆)‘∅) = (♯‘∅)) |
| 9 | hash0 14274 | . . 3 ⊢ (♯‘∅) = 0 | |
| 10 | 8, 9 | eqtrdi 2780 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((♯ ↾ 𝑆)‘∅) = 0) |
| 11 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 12 | hasheuni 34058 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (♯‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(♯‘𝑦)) | |
| 13 | 11, 12 | mpan 690 | . . . . . 6 ⊢ (Disj 𝑦 ∈ 𝑥 𝑦 → (♯‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(♯‘𝑦)) |
| 14 | 13 | ad2antll 729 | . . . . 5 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (♯‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(♯‘𝑦)) |
| 15 | isrnsigau 34100 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (𝑆 ⊆ 𝒫 ∪ 𝑆 ∧ (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) | |
| 16 | 15 | simprd 495 | . . . . . . . . . 10 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (∪ 𝑆 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∪ 𝑆 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
| 17 | 16 | simp3d 1144 | . . . . . . . . 9 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)) |
| 18 | fvres 6841 | . . . . . . . . . . 11 ⊢ (∪ 𝑥 ∈ 𝑆 → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥)) | |
| 19 | 18 | imim2i 16 | . . . . . . . . . 10 ⊢ ((𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) → (𝑥 ≼ ω → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥))) |
| 20 | 19 | ralimi 3066 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆) → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥))) |
| 21 | 17, 20 | syl 17 | . . . . . . . 8 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥))) |
| 22 | 21 | r19.21bi 3221 | . . . . . . 7 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) → (𝑥 ≼ ω → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥))) |
| 23 | 22 | imp 406 | . . . . . 6 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ 𝑥 ≼ ω) → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥)) |
| 24 | 23 | adantrr 717 | . . . . 5 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ((♯ ↾ 𝑆)‘∪ 𝑥) = (♯‘∪ 𝑥)) |
| 25 | elpwi 4558 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 𝑆 → 𝑥 ⊆ 𝑆) | |
| 26 | 25 | sseld 3934 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 𝑆 → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑆)) |
| 27 | fvres 6841 | . . . . . . . . 9 ⊢ (𝑦 ∈ 𝑆 → ((♯ ↾ 𝑆)‘𝑦) = (♯‘𝑦)) | |
| 28 | 26, 27 | syl6 35 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑆 → (𝑦 ∈ 𝑥 → ((♯ ↾ 𝑆)‘𝑦) = (♯‘𝑦))) |
| 29 | 28 | imp 406 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝒫 𝑆 ∧ 𝑦 ∈ 𝑥) → ((♯ ↾ 𝑆)‘𝑦) = (♯‘𝑦)) |
| 30 | 29 | esumeq2dv 34011 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑆 → Σ*𝑦 ∈ 𝑥((♯ ↾ 𝑆)‘𝑦) = Σ*𝑦 ∈ 𝑥(♯‘𝑦)) |
| 31 | 30 | ad2antlr 727 | . . . . 5 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → Σ*𝑦 ∈ 𝑥((♯ ↾ 𝑆)‘𝑦) = Σ*𝑦 ∈ 𝑥(♯‘𝑦)) |
| 32 | 14, 24, 31 | 3eqtr4d 2774 | . . . 4 ⊢ (((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ((♯ ↾ 𝑆)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((♯ ↾ 𝑆)‘𝑦)) |
| 33 | 32 | ex 412 | . . 3 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((♯ ↾ 𝑆)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((♯ ↾ 𝑆)‘𝑦))) |
| 34 | 33 | ralrimiva 3121 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((♯ ↾ 𝑆)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((♯ ↾ 𝑆)‘𝑦))) |
| 35 | ismeas 34172 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((♯ ↾ 𝑆) ∈ (measures‘𝑆) ↔ ((♯ ↾ 𝑆):𝑆⟶(0[,]+∞) ∧ ((♯ ↾ 𝑆)‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ((♯ ↾ 𝑆)‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥((♯ ↾ 𝑆)‘𝑦))))) | |
| 36 | 5, 10, 34, 35 | mpbir3and 1343 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (♯ ↾ 𝑆) ∈ (measures‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 Disj wdisj 5059 class class class wbr 5092 ran crn 5620 ↾ cres 5621 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ωcom 7799 ≼ cdom 8870 0cc0 11009 +∞cpnf 11146 [,]cicc 13251 ♯chash 14237 Σ*cesum 34000 sigAlgebracsiga 34081 measurescmeas 34168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ioc 13253 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-plusf 18513 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-abv 20694 df-lmod 20765 df-scaf 20766 df-sra 21077 df-rgmod 21078 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-tmd 23957 df-tgp 23958 df-tsms 24012 df-trg 24045 df-xms 24206 df-ms 24207 df-tms 24208 df-nm 24468 df-ngp 24469 df-nrg 24471 df-nlm 24472 df-ii 24768 df-cncf 24769 df-limc 25765 df-dv 25766 df-log 26463 df-esum 34001 df-siga 34082 df-meas 34169 |
| This theorem is referenced by: pwcntmeas 34200 |
| Copyright terms: Public domain | W3C validator |