![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumle | Structured version Visualization version GIF version |
Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
Ref | Expression |
---|---|
esumadd.0 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumadd.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumadd.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
esumle | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13414 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumadd.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumadd.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | 3 | ralrimiva 3145 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
5 | nfcv 2902 | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
6 | 5 | esumcl 33341 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
7 | 2, 4, 6 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
8 | 1, 7 | sselid 3980 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
9 | esumadd.2 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
10 | 1, 9 | sselid 3980 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
11 | 1, 3 | sselid 3980 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
12 | 11 | xnegcld 13286 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -𝑒𝐵 ∈ ℝ*) |
13 | 10, 12 | xaddcld 13287 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) |
14 | esumle.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
15 | xsubge0 13247 | . . . . . . . . . 10 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐶)) | |
16 | 10, 11, 15 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐶)) |
17 | 14, 16 | mpbird 257 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ (𝐶 +𝑒 -𝑒𝐵)) |
18 | pnfge 13117 | . . . . . . . . 9 ⊢ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞) | |
19 | 13, 18 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞) |
20 | 0xr 11268 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
21 | pnfxr 11275 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
22 | elicc1 13375 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) | |
23 | 20, 21, 22 | mp2an 689 | . . . . . . . 8 ⊢ ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)) |
24 | 13, 17, 19, 23 | syl3anbrc 1342 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
25 | 24 | ralrimiva 3145 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
26 | 5 | esumcl 33341 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
27 | 2, 25, 26 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
28 | 1, 27 | sselid 3980 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) |
29 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ*) |
30 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
31 | elicc4 13398 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) | |
32 | 29, 30, 28, 31 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) |
33 | 27, 32 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)) |
34 | 33 | simpld 494 | . . . 4 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) |
35 | xraddge02 32251 | . . . . 5 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)))) | |
36 | 35 | imp 406 | . . . 4 ⊢ (((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) ∧ 0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵))) |
37 | 8, 28, 34, 36 | syl21anc 835 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵))) |
38 | xaddcom 13226 | . . . 4 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) | |
39 | 8, 28, 38 | syl2anc 583 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
40 | 37, 39 | breqtrd 5174 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
41 | 2, 24, 3 | esumadd 33368 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
42 | xrge0npcan 32477 | . . . . 5 ⊢ ((𝐶 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐶) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) | |
43 | 9, 3, 14, 42 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) |
44 | 43 | esumeq2dv 33349 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = Σ*𝑘 ∈ 𝐴𝐶) |
45 | 41, 44 | eqtr3d 2773 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴𝐶) |
46 | 40, 45 | breqtrd 5174 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 class class class wbr 5148 (class class class)co 7412 0cc0 11116 +∞cpnf 11252 ℝ*cxr 11254 ≤ cle 11256 -𝑒cxne 13096 +𝑒 cxad 13097 [,]cicc 13334 Σ*cesum 33338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-pi 16023 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-ordt 17454 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-ps 18526 df-tsr 18527 df-plusf 18567 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-mhm 18708 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-mulg 18991 df-subg 19043 df-cntz 19226 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-cring 20134 df-subrng 20438 df-subrg 20463 df-abv 20572 df-lmod 20620 df-scaf 20621 df-sra 20934 df-rgmod 20935 df-psmet 21140 df-xmet 21141 df-met 21142 df-bl 21143 df-mopn 21144 df-fbas 21145 df-fg 21146 df-cnfld 21149 df-top 22629 df-topon 22646 df-topsp 22668 df-bases 22682 df-cld 22756 df-ntr 22757 df-cls 22758 df-nei 22835 df-lp 22873 df-perf 22874 df-cn 22964 df-cnp 22965 df-haus 23052 df-tx 23299 df-hmeo 23492 df-fil 23583 df-fm 23675 df-flim 23676 df-flf 23677 df-tmd 23809 df-tgp 23810 df-tsms 23864 df-trg 23897 df-xms 24059 df-ms 24060 df-tms 24061 df-nm 24324 df-ngp 24325 df-nrg 24327 df-nlm 24328 df-ii 24630 df-cncf 24631 df-limc 25628 df-dv 25629 df-log 26316 df-esum 33339 |
This theorem is referenced by: measiun 33529 |
Copyright terms: Public domain | W3C validator |