Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumle | Structured version Visualization version GIF version |
Description: If all of the terms of an extended sums compare, so do the sums. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
Ref | Expression |
---|---|
esumadd.0 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumadd.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumadd.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
esumle | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 12904 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumadd.0 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumadd.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | 3 | ralrimiva 3096 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
5 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
6 | 5 | esumcl 31568 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
7 | 2, 4, 6 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
8 | 1, 7 | sseldi 3875 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
9 | esumadd.2 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
10 | 1, 9 | sseldi 3875 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
11 | 1, 3 | sseldi 3875 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
12 | 11 | xnegcld 12776 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → -𝑒𝐵 ∈ ℝ*) |
13 | 10, 12 | xaddcld 12777 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) |
14 | esumle.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
15 | xsubge0 12737 | . . . . . . . . . 10 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐶)) | |
16 | 10, 11, 15 | syl2anc 587 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (0 ≤ (𝐶 +𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐶)) |
17 | 14, 16 | mpbird 260 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ (𝐶 +𝑒 -𝑒𝐵)) |
18 | pnfge 12608 | . . . . . . . . 9 ⊢ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞) | |
19 | 13, 18 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ≤ +∞) |
20 | 0xr 10766 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
21 | pnfxr 10773 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
22 | elicc1 12865 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) | |
23 | 20, 21, 22 | mp2an 692 | . . . . . . . 8 ⊢ ((𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ ((𝐶 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ≤ (𝐶 +𝑒 -𝑒𝐵) ∧ (𝐶 +𝑒 -𝑒𝐵) ≤ +∞)) |
24 | 13, 17, 19, 23 | syl3anbrc 1344 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
25 | 24 | ralrimiva 3096 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
26 | 5 | esumcl 31568 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 (𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
27 | 2, 25, 26 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞)) |
28 | 1, 27 | sseldi 3875 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) |
29 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ*) |
30 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → +∞ ∈ ℝ*) |
31 | elicc4 12888 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) | |
32 | 29, 30, 28, 31 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ (0[,]+∞) ↔ (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞))) |
33 | 27, 32 | mpbid 235 | . . . . 5 ⊢ (𝜑 → (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ≤ +∞)) |
34 | 33 | simpld 498 | . . . 4 ⊢ (𝜑 → 0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) |
35 | xraddge02 30654 | . . . . 5 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)))) | |
36 | 35 | imp 410 | . . . 4 ⊢ (((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) ∧ 0 ≤ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵))) |
37 | 8, 28, 34, 36 | syl21anc 837 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵))) |
38 | xaddcom 12716 | . . . 4 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) ∈ ℝ*) → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) | |
39 | 8, 28, 38 | syl2anc 587 | . . 3 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 +𝑒 Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵)) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
40 | 37, 39 | breqtrd 5056 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
41 | 2, 24, 3 | esumadd 31595 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵)) |
42 | xrge0npcan 30880 | . . . . 5 ⊢ ((𝐶 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐶) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) | |
43 | 9, 3, 14, 42 | syl3anc 1372 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐶) |
44 | 43 | esumeq2dv 31576 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴((𝐶 +𝑒 -𝑒𝐵) +𝑒 𝐵) = Σ*𝑘 ∈ 𝐴𝐶) |
45 | 41, 44 | eqtr3d 2775 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴(𝐶 +𝑒 -𝑒𝐵) +𝑒 Σ*𝑘 ∈ 𝐴𝐵) = Σ*𝑘 ∈ 𝐴𝐶) |
46 | 40, 45 | breqtrd 5056 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ≤ Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∀wral 3053 class class class wbr 5030 (class class class)co 7170 0cc0 10615 +∞cpnf 10750 ℝ*cxr 10752 ≤ cle 10754 -𝑒cxne 12587 +𝑒 cxad 12588 [,]cicc 12824 Σ*cesum 31565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ioc 12826 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-fac 13726 df-bc 13755 df-hash 13783 df-shft 14516 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-limsup 14918 df-clim 14935 df-rlim 14936 df-sum 15136 df-ef 15513 df-sin 15515 df-cos 15516 df-pi 15518 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-ordt 16877 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-ps 17926 df-tsr 17927 df-plusf 17967 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-submnd 18073 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mulg 18343 df-subg 18394 df-cntz 18565 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-cring 19419 df-subrg 19652 df-abv 19707 df-lmod 19755 df-scaf 19756 df-sra 20063 df-rgmod 20064 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-lp 21887 df-perf 21888 df-cn 21978 df-cnp 21979 df-haus 22066 df-tx 22313 df-hmeo 22506 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-tmd 22823 df-tgp 22824 df-tsms 22878 df-trg 22911 df-xms 23073 df-ms 23074 df-tms 23075 df-nm 23335 df-ngp 23336 df-nrg 23338 df-nlm 23339 df-ii 23629 df-cncf 23630 df-limc 24618 df-dv 24619 df-log 25300 df-esum 31566 |
This theorem is referenced by: measiun 31756 |
Copyright terms: Public domain | W3C validator |