Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esummulc1 Structured version   Visualization version   GIF version

Theorem esummulc1 31450
Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esummulc2.a (𝜑𝐴𝑉)
esummulc2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esummulc2.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
esummulc1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esummulc1
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 esummulc2.a . . 3 (𝜑𝐴𝑉)
3 esummulc2.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2798 . . . 4 (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))
5 esummulc2.c . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
61, 4, 5xrge0mulc1cn 31294 . . 3 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
7 eqidd 2799 . . . 4 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
8 oveq1 7142 . . . . 5 (𝑧 = 0 → (𝑧 ·e 𝐶) = (0 ·e 𝐶))
9 icossxr 12810 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
109, 5sseldi 3913 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 xmul02 12649 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
1210, 11syl 17 . . . . 5 (𝜑 → (0 ·e 𝐶) = 0)
138, 12sylan9eqr 2855 . . . 4 ((𝜑𝑧 = 0) → (𝑧 ·e 𝐶) = 0)
14 0e0iccpnf 12837 . . . . 5 0 ∈ (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
167, 13, 15, 15fvmptd 6752 . . 3 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘0) = 0)
17 simp2 1134 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
18 simp3 1135 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑦 ∈ (0[,]+∞))
19 icossicc 12814 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2053ad2ant1 1130 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,)+∞))
2119, 20sseldi 3913 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
22 xrge0adddir 30726 . . . . 5 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
2317, 18, 21, 22syl3anc 1368 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
24 eqidd 2799 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
25 simpr 488 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → 𝑧 = (𝑥 +𝑒 𝑦))
2625oveq1d 7150 . . . . 5 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → (𝑧 ·e 𝐶) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
27 ge0xaddcl 12840 . . . . . 6 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
28273adant1 1127 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
29 ovexd 7170 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) ∈ V)
3024, 26, 28, 29fvmptd 6752 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
31 simpr 488 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
3231oveq1d 7150 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → (𝑧 ·e 𝐶) = (𝑥 ·e 𝐶))
33 ovexd 7170 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ V)
3424, 32, 17, 33fvmptd 6752 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) = (𝑥 ·e 𝐶))
35 simpr 488 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
3635oveq1d 7150 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → (𝑧 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovexd 7170 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑦 ·e 𝐶) ∈ V)
3824, 36, 18, 37fvmptd 6752 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦) = (𝑦 ·e 𝐶))
3934, 38oveq12d 7153 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
4023, 30, 393eqtr4d 2843 . . 3 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)))
411, 2, 3, 6, 16, 40esumcocn 31449 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵))
42 simpr 488 . . . 4 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → 𝑧 = Σ*𝑘𝐴𝐵)
4342oveq1d 7150 . . 3 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → (𝑧 ·e 𝐶) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
443ralrimiva 3149 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
45 nfcv 2955 . . . . 5 𝑘𝐴
4645esumcl 31399 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
472, 44, 46syl2anc 587 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
48 ovexd 7170 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) ∈ V)
497, 43, 47, 48fvmptd 6752 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
50 eqidd 2799 . . . 4 ((𝜑𝑘𝐴) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
51 simpr 488 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵)
5251oveq1d 7150 . . . 4 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → (𝑧 ·e 𝐶) = (𝐵 ·e 𝐶))
53 ovexd 7170 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ·e 𝐶) ∈ V)
5450, 52, 3, 53fvmptd 6752 . . 3 ((𝜑𝑘𝐴) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = (𝐵 ·e 𝐶))
5554esumeq2dv 31407 . 2 (𝜑 → Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
5641, 49, 553eqtr3d 2841 1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cmpt 5110  cfv 6324  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  *cxr 10663  cle 10665   +𝑒 cxad 12493   ·e cxmu 12494  [,)cico 12728  [,]cicc 12729  t crest 16686  ordTopcordt 16764  Σ*cesum 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-ordt 16766  df-xrs 16767  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-cntz 18439  df-cmn 18900  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-ntr 21625  df-nei 21703  df-cn 21832  df-cnp 21833  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tsms 22732  df-esum 31397
This theorem is referenced by:  esummulc2  31451  esumdivc  31452
  Copyright terms: Public domain W3C validator