Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esummulc1 Structured version   Visualization version   GIF version

Theorem esummulc1 34094
Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esummulc2.a (𝜑𝐴𝑉)
esummulc2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esummulc2.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
esummulc1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esummulc1
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 esummulc2.a . . 3 (𝜑𝐴𝑉)
3 esummulc2.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2731 . . . 4 (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))
5 esummulc2.c . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
61, 4, 5xrge0mulc1cn 33954 . . 3 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
7 eqidd 2732 . . . 4 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
8 oveq1 7353 . . . . 5 (𝑧 = 0 → (𝑧 ·e 𝐶) = (0 ·e 𝐶))
9 icossxr 13332 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
109, 5sselid 3927 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 xmul02 13167 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
1210, 11syl 17 . . . . 5 (𝜑 → (0 ·e 𝐶) = 0)
138, 12sylan9eqr 2788 . . . 4 ((𝜑𝑧 = 0) → (𝑧 ·e 𝐶) = 0)
14 0e0iccpnf 13359 . . . . 5 0 ∈ (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
167, 13, 15, 15fvmptd 6936 . . 3 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘0) = 0)
17 simp2 1137 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
18 simp3 1138 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑦 ∈ (0[,]+∞))
19 icossicc 13336 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2053ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,)+∞))
2119, 20sselid 3927 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
22 xrge0adddir 32999 . . . . 5 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
2317, 18, 21, 22syl3anc 1373 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
24 eqidd 2732 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
25 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → 𝑧 = (𝑥 +𝑒 𝑦))
2625oveq1d 7361 . . . . 5 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → (𝑧 ·e 𝐶) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
27 ge0xaddcl 13362 . . . . . 6 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
28273adant1 1130 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
29 ovexd 7381 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) ∈ V)
3024, 26, 28, 29fvmptd 6936 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
31 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
3231oveq1d 7361 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → (𝑧 ·e 𝐶) = (𝑥 ·e 𝐶))
33 ovexd 7381 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ V)
3424, 32, 17, 33fvmptd 6936 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) = (𝑥 ·e 𝐶))
35 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
3635oveq1d 7361 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → (𝑧 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovexd 7381 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑦 ·e 𝐶) ∈ V)
3824, 36, 18, 37fvmptd 6936 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦) = (𝑦 ·e 𝐶))
3934, 38oveq12d 7364 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
4023, 30, 393eqtr4d 2776 . . 3 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)))
411, 2, 3, 6, 16, 40esumcocn 34093 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵))
42 simpr 484 . . . 4 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → 𝑧 = Σ*𝑘𝐴𝐵)
4342oveq1d 7361 . . 3 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → (𝑧 ·e 𝐶) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
443ralrimiva 3124 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
45 nfcv 2894 . . . . 5 𝑘𝐴
4645esumcl 34043 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
472, 44, 46syl2anc 584 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
48 ovexd 7381 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) ∈ V)
497, 43, 47, 48fvmptd 6936 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
50 eqidd 2732 . . . 4 ((𝜑𝑘𝐴) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
51 simpr 484 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵)
5251oveq1d 7361 . . . 4 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → (𝑧 ·e 𝐶) = (𝐵 ·e 𝐶))
53 ovexd 7381 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ·e 𝐶) ∈ V)
5450, 52, 3, 53fvmptd 6936 . . 3 ((𝜑𝑘𝐴) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = (𝐵 ·e 𝐶))
5554esumeq2dv 34051 . 2 (𝜑 → Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
5641, 49, 553eqtr3d 2774 1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cmpt 5170  cfv 6481  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145  cle 11147   +𝑒 cxad 13009   ·e cxmu 13010  [,)cico 13247  [,]cicc 13248  t crest 17324  ordTopcordt 17403  Σ*cesum 34040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-ordt 17405  df-xrs 17406  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-cntz 19229  df-cmn 19694  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-ntr 22935  df-nei 23013  df-cn 23142  df-cnp 23143  df-haus 23230  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-tsms 24042  df-esum 34041
This theorem is referenced by:  esummulc2  34095  esumdivc  34096
  Copyright terms: Public domain W3C validator