Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esummulc1 Structured version   Visualization version   GIF version

Theorem esummulc1 30677
Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esummulc2.a (𝜑𝐴𝑉)
esummulc2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esummulc2.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
esummulc1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esummulc1
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 esummulc2.a . . 3 (𝜑𝐴𝑉)
3 esummulc2.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2825 . . . 4 (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))
5 esummulc2.c . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
61, 4, 5xrge0mulc1cn 30521 . . 3 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
7 eqidd 2826 . . . 4 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
8 oveq1 6912 . . . . 5 (𝑧 = 0 → (𝑧 ·e 𝐶) = (0 ·e 𝐶))
9 icossxr 12546 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
109, 5sseldi 3825 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 xmul02 12386 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
1210, 11syl 17 . . . . 5 (𝜑 → (0 ·e 𝐶) = 0)
138, 12sylan9eqr 2883 . . . 4 ((𝜑𝑧 = 0) → (𝑧 ·e 𝐶) = 0)
14 0e0iccpnf 12573 . . . . 5 0 ∈ (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
167, 13, 15, 15fvmptd 6535 . . 3 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘0) = 0)
17 simp2 1171 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
18 simp3 1172 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑦 ∈ (0[,]+∞))
19 icossicc 12549 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2053ad2ant1 1167 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,)+∞))
2119, 20sseldi 3825 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
22 xrge0adddir 30226 . . . . 5 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
2317, 18, 21, 22syl3anc 1494 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
24 eqidd 2826 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
25 simpr 479 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → 𝑧 = (𝑥 +𝑒 𝑦))
2625oveq1d 6920 . . . . 5 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → (𝑧 ·e 𝐶) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
27 ge0xaddcl 12576 . . . . . 6 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
28273adant1 1164 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
29 ovexd 6939 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) ∈ V)
3024, 26, 28, 29fvmptd 6535 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
31 simpr 479 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
3231oveq1d 6920 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → (𝑧 ·e 𝐶) = (𝑥 ·e 𝐶))
33 ovexd 6939 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ V)
3424, 32, 17, 33fvmptd 6535 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) = (𝑥 ·e 𝐶))
35 simpr 479 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
3635oveq1d 6920 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → (𝑧 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovexd 6939 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑦 ·e 𝐶) ∈ V)
3824, 36, 18, 37fvmptd 6535 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦) = (𝑦 ·e 𝐶))
3934, 38oveq12d 6923 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
4023, 30, 393eqtr4d 2871 . . 3 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)))
411, 2, 3, 6, 16, 40esumcocn 30676 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵))
42 simpr 479 . . . 4 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → 𝑧 = Σ*𝑘𝐴𝐵)
4342oveq1d 6920 . . 3 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → (𝑧 ·e 𝐶) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
443ralrimiva 3175 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
45 nfcv 2969 . . . . 5 𝑘𝐴
4645esumcl 30626 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
472, 44, 46syl2anc 579 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
48 ovexd 6939 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) ∈ V)
497, 43, 47, 48fvmptd 6535 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
50 eqidd 2826 . . . 4 ((𝜑𝑘𝐴) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
51 simpr 479 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵)
5251oveq1d 6920 . . . 4 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → (𝑧 ·e 𝐶) = (𝐵 ·e 𝐶))
53 ovexd 6939 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ·e 𝐶) ∈ V)
5450, 52, 3, 53fvmptd 6535 . . 3 ((𝜑𝑘𝐴) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = (𝐵 ·e 𝐶))
5554esumeq2dv 30634 . 2 (𝜑 → Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
5641, 49, 553eqtr3d 2869 1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cmpt 4952  cfv 6123  (class class class)co 6905  0cc0 10252  +∞cpnf 10388  *cxr 10390  cle 10392   +𝑒 cxad 12230   ·e cxmu 12231  [,)cico 12465  [,]cicc 12466  t crest 16434  ordTopcordt 16512  Σ*cesum 30623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-tset 16324  df-ple 16325  df-ds 16327  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-ordt 16514  df-xrs 16515  df-mre 16599  df-mrc 16600  df-acs 16602  df-ps 17553  df-tsr 17554  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-cntz 18100  df-cmn 18548  df-fbas 20103  df-fg 20104  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-ntr 21195  df-nei 21273  df-cn 21402  df-cnp 21403  df-haus 21490  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-tsms 22300  df-esum 30624
This theorem is referenced by:  esummulc2  30678  esumdivc  30679
  Copyright terms: Public domain W3C validator