Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esummulc1 Structured version   Visualization version   GIF version

Theorem esummulc1 31949
Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esummulc2.a (𝜑𝐴𝑉)
esummulc2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esummulc2.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
esummulc1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esummulc1
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 esummulc2.a . . 3 (𝜑𝐴𝑉)
3 esummulc2.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2738 . . . 4 (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))
5 esummulc2.c . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
61, 4, 5xrge0mulc1cn 31793 . . 3 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
7 eqidd 2739 . . . 4 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
8 oveq1 7262 . . . . 5 (𝑧 = 0 → (𝑧 ·e 𝐶) = (0 ·e 𝐶))
9 icossxr 13093 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
109, 5sselid 3915 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 xmul02 12931 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
1210, 11syl 17 . . . . 5 (𝜑 → (0 ·e 𝐶) = 0)
138, 12sylan9eqr 2801 . . . 4 ((𝜑𝑧 = 0) → (𝑧 ·e 𝐶) = 0)
14 0e0iccpnf 13120 . . . . 5 0 ∈ (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
167, 13, 15, 15fvmptd 6864 . . 3 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘0) = 0)
17 simp2 1135 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
18 simp3 1136 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑦 ∈ (0[,]+∞))
19 icossicc 13097 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2053ad2ant1 1131 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,)+∞))
2119, 20sselid 3915 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
22 xrge0adddir 31203 . . . . 5 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
2317, 18, 21, 22syl3anc 1369 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
24 eqidd 2739 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
25 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → 𝑧 = (𝑥 +𝑒 𝑦))
2625oveq1d 7270 . . . . 5 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → (𝑧 ·e 𝐶) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
27 ge0xaddcl 13123 . . . . . 6 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
28273adant1 1128 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
29 ovexd 7290 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) ∈ V)
3024, 26, 28, 29fvmptd 6864 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
31 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
3231oveq1d 7270 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → (𝑧 ·e 𝐶) = (𝑥 ·e 𝐶))
33 ovexd 7290 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ V)
3424, 32, 17, 33fvmptd 6864 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) = (𝑥 ·e 𝐶))
35 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
3635oveq1d 7270 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → (𝑧 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovexd 7290 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑦 ·e 𝐶) ∈ V)
3824, 36, 18, 37fvmptd 6864 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦) = (𝑦 ·e 𝐶))
3934, 38oveq12d 7273 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
4023, 30, 393eqtr4d 2788 . . 3 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)))
411, 2, 3, 6, 16, 40esumcocn 31948 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵))
42 simpr 484 . . . 4 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → 𝑧 = Σ*𝑘𝐴𝐵)
4342oveq1d 7270 . . 3 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → (𝑧 ·e 𝐶) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
443ralrimiva 3107 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
45 nfcv 2906 . . . . 5 𝑘𝐴
4645esumcl 31898 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
472, 44, 46syl2anc 583 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
48 ovexd 7290 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) ∈ V)
497, 43, 47, 48fvmptd 6864 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
50 eqidd 2739 . . . 4 ((𝜑𝑘𝐴) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
51 simpr 484 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵)
5251oveq1d 7270 . . . 4 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → (𝑧 ·e 𝐶) = (𝐵 ·e 𝐶))
53 ovexd 7290 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ·e 𝐶) ∈ V)
5450, 52, 3, 53fvmptd 6864 . . 3 ((𝜑𝑘𝐴) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = (𝐵 ·e 𝐶))
5554esumeq2dv 31906 . 2 (𝜑 → Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
5641, 49, 553eqtr3d 2786 1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  *cxr 10939  cle 10941   +𝑒 cxad 12775   ·e cxmu 12776  [,)cico 13010  [,]cicc 13011  t crest 17048  ordTopcordt 17127  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-ordt 17129  df-xrs 17130  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-cnp 22287  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186  df-esum 31896
This theorem is referenced by:  esummulc2  31950  esumdivc  31951
  Copyright terms: Public domain W3C validator