Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esummulc1 Structured version   Visualization version   GIF version

Theorem esummulc1 34082
Description: An extended sum multiplied by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esummulc2.a (𝜑𝐴𝑉)
esummulc2.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esummulc2.c (𝜑𝐶 ∈ (0[,)+∞))
Assertion
Ref Expression
esummulc1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esummulc1
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2 esummulc2.a . . 3 (𝜑𝐴𝑉)
3 esummulc2.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
4 eqid 2737 . . . 4 (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))
5 esummulc2.c . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
61, 4, 5xrge0mulc1cn 33940 . . 3 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) ∈ (((ordTop‘ ≤ ) ↾t (0[,]+∞)) Cn ((ordTop‘ ≤ ) ↾t (0[,]+∞))))
7 eqidd 2738 . . . 4 (𝜑 → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
8 oveq1 7438 . . . . 5 (𝑧 = 0 → (𝑧 ·e 𝐶) = (0 ·e 𝐶))
9 icossxr 13472 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
109, 5sselid 3981 . . . . . 6 (𝜑𝐶 ∈ ℝ*)
11 xmul02 13310 . . . . . 6 (𝐶 ∈ ℝ* → (0 ·e 𝐶) = 0)
1210, 11syl 17 . . . . 5 (𝜑 → (0 ·e 𝐶) = 0)
138, 12sylan9eqr 2799 . . . 4 ((𝜑𝑧 = 0) → (𝑧 ·e 𝐶) = 0)
14 0e0iccpnf 13499 . . . . 5 0 ∈ (0[,]+∞)
1514a1i 11 . . . 4 (𝜑 → 0 ∈ (0[,]+∞))
167, 13, 15, 15fvmptd 7023 . . 3 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘0) = 0)
17 simp2 1138 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
18 simp3 1139 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝑦 ∈ (0[,]+∞))
19 icossicc 13476 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2053ad2ant1 1134 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,)+∞))
2119, 20sselid 3981 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
22 xrge0adddir 33023 . . . . 5 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
2317, 18, 21, 22syl3anc 1373 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
24 eqidd 2738 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
25 simpr 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → 𝑧 = (𝑥 +𝑒 𝑦))
2625oveq1d 7446 . . . . 5 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = (𝑥 +𝑒 𝑦)) → (𝑧 ·e 𝐶) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
27 ge0xaddcl 13502 . . . . . 6 ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
28273adant1 1131 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 +𝑒 𝑦) ∈ (0[,]+∞))
29 ovexd 7466 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑥 +𝑒 𝑦) ·e 𝐶) ∈ V)
3024, 26, 28, 29fvmptd 7023 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = ((𝑥 +𝑒 𝑦) ·e 𝐶))
31 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
3231oveq1d 7446 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑥) → (𝑧 ·e 𝐶) = (𝑥 ·e 𝐶))
33 ovexd 7466 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 ·e 𝐶) ∈ V)
3424, 32, 17, 33fvmptd 7023 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) = (𝑥 ·e 𝐶))
35 simpr 484 . . . . . . 7 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
3635oveq1d 7446 . . . . . 6 (((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑧 = 𝑦) → (𝑧 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovexd 7466 . . . . . 6 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑦 ·e 𝐶) ∈ V)
3824, 36, 18, 37fvmptd 7023 . . . . 5 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦) = (𝑦 ·e 𝐶))
3934, 38oveq12d 7449 . . . 4 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)) = ((𝑥 ·e 𝐶) +𝑒 (𝑦 ·e 𝐶)))
4023, 30, 393eqtr4d 2787 . . 3 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘(𝑥 +𝑒 𝑦)) = (((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑥) +𝑒 ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝑦)))
411, 2, 3, 6, 16, 40esumcocn 34081 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵))
42 simpr 484 . . . 4 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → 𝑧 = Σ*𝑘𝐴𝐵)
4342oveq1d 7446 . . 3 ((𝜑𝑧 = Σ*𝑘𝐴𝐵) → (𝑧 ·e 𝐶) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
443ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
45 nfcv 2905 . . . . 5 𝑘𝐴
4645esumcl 34031 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
472, 44, 46syl2anc 584 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
48 ovexd 7466 . . 3 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) ∈ V)
497, 43, 47, 48fvmptd 7023 . 2 (𝜑 → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘Σ*𝑘𝐴𝐵) = (Σ*𝑘𝐴𝐵 ·e 𝐶))
50 eqidd 2738 . . . 4 ((𝜑𝑘𝐴) → (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)) = (𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶)))
51 simpr 484 . . . . 5 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵)
5251oveq1d 7446 . . . 4 (((𝜑𝑘𝐴) ∧ 𝑧 = 𝐵) → (𝑧 ·e 𝐶) = (𝐵 ·e 𝐶))
53 ovexd 7466 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ·e 𝐶) ∈ V)
5450, 52, 3, 53fvmptd 7023 . . 3 ((𝜑𝑘𝐴) → ((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = (𝐵 ·e 𝐶))
5554esumeq2dv 34039 . 2 (𝜑 → Σ*𝑘𝐴((𝑧 ∈ (0[,]+∞) ↦ (𝑧 ·e 𝐶))‘𝐵) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
5641, 49, 553eqtr3d 2785 1 (𝜑 → (Σ*𝑘𝐴𝐵 ·e 𝐶) = Σ*𝑘𝐴(𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cmpt 5225  cfv 6561  (class class class)co 7431  0cc0 11155  +∞cpnf 11292  *cxr 11294  cle 11296   +𝑒 cxad 13152   ·e cxmu 13153  [,)cico 13389  [,]cicc 13390  t crest 17465  ordTopcordt 17544  Σ*cesum 34028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-tset 17316  df-ple 17317  df-ds 17319  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-ordt 17546  df-xrs 17547  df-mre 17629  df-mrc 17630  df-acs 17632  df-ps 18611  df-tsr 18612  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-cntz 19335  df-cmn 19800  df-fbas 21361  df-fg 21362  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-ntr 23028  df-nei 23106  df-cn 23235  df-cnp 23236  df-haus 23323  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-tsms 24135  df-esum 34029
This theorem is referenced by:  esummulc2  34083  esumdivc  34084
  Copyright terms: Public domain W3C validator