Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑀 ∈ (measures‘𝑆)) |
2 | | measbase 32065 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
3 | 2 | ad2antrr 722 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
4 | | simpr 484 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
5 | | simplr 765 |
. . . . 5
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
6 | | inelsiga 32003 |
. . . . 5
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝑥 ∩ 𝐴) ∈ 𝑆) |
7 | 3, 4, 5, 6 | syl3anc 1369 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∩ 𝐴) ∈ 𝑆) |
8 | | measvxrge0 32073 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑥 ∩ 𝐴) ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ∈ (0[,]+∞)) |
9 | 1, 7, 8 | syl2anc 583 |
. . 3
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑀‘(𝑥 ∩ 𝐴)) ∈ (0[,]+∞)) |
10 | 9 | fmpttd 6971 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))):𝑆⟶(0[,]+∞)) |
11 | | eqidd 2739 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) = (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))) |
12 | | ineq1 4136 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑥 ∩ 𝐴) = (∅ ∩ 𝐴)) |
13 | | 0in 4324 |
. . . . . . 7
⊢ (∅
∩ 𝐴) =
∅ |
14 | 12, 13 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ∩ 𝐴) = ∅) |
15 | 14 | fveq2d 6760 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘∅)) |
16 | 15 | adantl 481 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 = ∅) → (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘∅)) |
17 | | measvnul 32074 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) |
18 | 17 | ad2antrr 722 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 = ∅) → (𝑀‘∅) = 0) |
19 | 16, 18 | eqtrd 2778 |
. . 3
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑥 = ∅) → (𝑀‘(𝑥 ∩ 𝐴)) = 0) |
20 | 2 | adantr 480 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
21 | | 0elsiga 31982 |
. . . 4
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
22 | 20, 21 | syl 17 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ∅ ∈ 𝑆) |
23 | | 0red 10909 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → 0 ∈ ℝ) |
24 | 11, 19, 22, 23 | fvmptd 6864 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∅) = 0) |
25 | | measinblem 32088 |
. . . . 5
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → (𝑀‘(∪ 𝑧 ∩ 𝐴)) = Σ*𝑦 ∈ 𝑧(𝑀‘(𝑦 ∩ 𝐴))) |
26 | | eqidd 2739 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) = (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))) |
27 | | ineq1 4136 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑧 → (𝑥 ∩ 𝐴) = (∪ 𝑧 ∩ 𝐴)) |
28 | 27 | adantl 481 |
. . . . . . 7
⊢
(((((𝑀 ∈
(measures‘𝑆) ∧
𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) ∧ 𝑥 = ∪ 𝑧) → (𝑥 ∩ 𝐴) = (∪ 𝑧 ∩ 𝐴)) |
29 | 28 | fveq2d 6760 |
. . . . . 6
⊢
(((((𝑀 ∈
(measures‘𝑆) ∧
𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) ∧ 𝑥 = ∪ 𝑧) → (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘(∪ 𝑧 ∩ 𝐴))) |
30 | | simplll 771 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → 𝑀 ∈ (measures‘𝑆)) |
31 | 30, 2 | syl 17 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
32 | | simplr 765 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → 𝑧 ∈ 𝒫 𝑆) |
33 | | simprl 767 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → 𝑧 ≼ ω) |
34 | | sigaclcu 31985 |
. . . . . . 7
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑧 ∈ 𝒫 𝑆 ∧ 𝑧 ≼ ω) → ∪ 𝑧
∈ 𝑆) |
35 | 31, 32, 33, 34 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → ∪ 𝑧 ∈ 𝑆) |
36 | | simpllr 772 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → 𝐴 ∈ 𝑆) |
37 | | inelsiga 32003 |
. . . . . . . 8
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑧 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (∪ 𝑧 ∩ 𝐴) ∈ 𝑆) |
38 | 31, 35, 36, 37 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → (∪ 𝑧 ∩ 𝐴) ∈ 𝑆) |
39 | | measvxrge0 32073 |
. . . . . . 7
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (∪ 𝑧
∩ 𝐴) ∈ 𝑆) → (𝑀‘(∪ 𝑧 ∩ 𝐴)) ∈ (0[,]+∞)) |
40 | 30, 38, 39 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → (𝑀‘(∪ 𝑧 ∩ 𝐴)) ∈ (0[,]+∞)) |
41 | 26, 29, 35, 40 | fvmptd 6864 |
. . . . 5
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∪ 𝑧) = (𝑀‘(∪ 𝑧 ∩ 𝐴))) |
42 | | eqidd 2739 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) = (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))) |
43 | | ineq1 4136 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∩ 𝐴) = (𝑦 ∩ 𝐴)) |
44 | 43 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝑀 ∈
(measures‘𝑆) ∧
𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 = 𝑦) → (𝑥 ∩ 𝐴) = (𝑦 ∩ 𝐴)) |
45 | 44 | fveq2d 6760 |
. . . . . . . 8
⊢
(((((𝑀 ∈
(measures‘𝑆) ∧
𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 = 𝑦) → (𝑀‘(𝑥 ∩ 𝐴)) = (𝑀‘(𝑦 ∩ 𝐴))) |
46 | | elpwi 4539 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝒫 𝑆 → 𝑧 ⊆ 𝑆) |
47 | 46 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → 𝑧 ⊆ 𝑆) |
48 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ 𝑧) |
49 | 47, 48 | sseldd 3918 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → 𝑦 ∈ 𝑆) |
50 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → 𝑀 ∈ (measures‘𝑆)) |
51 | 50, 2 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → 𝑆 ∈ ∪ ran
sigAlgebra) |
52 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → 𝐴 ∈ 𝑆) |
53 | | inelsiga 32003 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑦 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝑦 ∩ 𝐴) ∈ 𝑆) |
54 | 51, 49, 52, 53 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → (𝑦 ∩ 𝐴) ∈ 𝑆) |
55 | | measvxrge0 32073 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝑦 ∩ 𝐴) ∈ 𝑆) → (𝑀‘(𝑦 ∩ 𝐴)) ∈ (0[,]+∞)) |
56 | 50, 54, 55 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → (𝑀‘(𝑦 ∩ 𝐴)) ∈ (0[,]+∞)) |
57 | 42, 45, 49, 56 | fvmptd 6864 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦 ∈ 𝑧) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦) = (𝑀‘(𝑦 ∩ 𝐴))) |
58 | 57 | esumeq2dv 31906 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) → Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦) = Σ*𝑦 ∈ 𝑧(𝑀‘(𝑦 ∩ 𝐴))) |
59 | 58 | adantr 480 |
. . . . 5
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦) = Σ*𝑦 ∈ 𝑧(𝑀‘(𝑦 ∩ 𝐴))) |
60 | 25, 41, 59 | 3eqtr4d 2788 |
. . . 4
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦)) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∪ 𝑧) = Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦)) |
61 | 60 | ex 412 |
. . 3
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) → ((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∪ 𝑧) = Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦))) |
62 | 61 | ralrimiva 3107 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∪ 𝑧) = Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦))) |
63 | | ismeas 32067 |
. . 3
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∅) = 0 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∪ 𝑧) = Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦))))) |
64 | 20, 63 | syl 17 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∅) = 0 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦) → ((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘∪ 𝑧) = Σ*𝑦 ∈ 𝑧((𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴)))‘𝑦))))) |
65 | 10, 24, 62, 64 | mpbir3and 1340 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑥 ∈ 𝑆 ↦ (𝑀‘(𝑥 ∩ 𝐴))) ∈ (measures‘𝑆)) |