Step | Hyp | Ref
| Expression |
1 | | simpll 766 |
. . . 4
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ β π) β π β (measuresβπ)) |
2 | | measbase 33226 |
. . . . . 6
β’ (π β (measuresβπ) β π β βͺ ran
sigAlgebra) |
3 | 2 | ad2antrr 725 |
. . . . 5
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ β π) β π β βͺ ran
sigAlgebra) |
4 | | simpr 486 |
. . . . 5
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ β π) β π₯ β π) |
5 | | simplr 768 |
. . . . 5
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ β π) β π΄ β π) |
6 | | inelsiga 33164 |
. . . . 5
β’ ((π β βͺ ran sigAlgebra β§ π₯ β π β§ π΄ β π) β (π₯ β© π΄) β π) |
7 | 3, 4, 5, 6 | syl3anc 1372 |
. . . 4
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ β π) β (π₯ β© π΄) β π) |
8 | | measvxrge0 33234 |
. . . 4
β’ ((π β (measuresβπ) β§ (π₯ β© π΄) β π) β (πβ(π₯ β© π΄)) β (0[,]+β)) |
9 | 1, 7, 8 | syl2anc 585 |
. . 3
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ β π) β (πβ(π₯ β© π΄)) β (0[,]+β)) |
10 | 9 | fmpttd 7115 |
. 2
β’ ((π β (measuresβπ) β§ π΄ β π) β (π₯ β π β¦ (πβ(π₯ β© π΄))):πβΆ(0[,]+β)) |
11 | | eqidd 2734 |
. . 3
β’ ((π β (measuresβπ) β§ π΄ β π) β (π₯ β π β¦ (πβ(π₯ β© π΄))) = (π₯ β π β¦ (πβ(π₯ β© π΄)))) |
12 | | ineq1 4206 |
. . . . . . 7
β’ (π₯ = β
β (π₯ β© π΄) = (β
β© π΄)) |
13 | | 0in 4394 |
. . . . . . 7
β’ (β
β© π΄) =
β
|
14 | 12, 13 | eqtrdi 2789 |
. . . . . 6
β’ (π₯ = β
β (π₯ β© π΄) = β
) |
15 | 14 | fveq2d 6896 |
. . . . 5
β’ (π₯ = β
β (πβ(π₯ β© π΄)) = (πββ
)) |
16 | 15 | adantl 483 |
. . . 4
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ = β
) β (πβ(π₯ β© π΄)) = (πββ
)) |
17 | | measvnul 33235 |
. . . . 5
β’ (π β (measuresβπ) β (πββ
) = 0) |
18 | 17 | ad2antrr 725 |
. . . 4
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ = β
) β (πββ
) = 0) |
19 | 16, 18 | eqtrd 2773 |
. . 3
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π₯ = β
) β (πβ(π₯ β© π΄)) = 0) |
20 | 2 | adantr 482 |
. . . 4
β’ ((π β (measuresβπ) β§ π΄ β π) β π β βͺ ran
sigAlgebra) |
21 | | 0elsiga 33143 |
. . . 4
β’ (π β βͺ ran sigAlgebra β β
β π) |
22 | 20, 21 | syl 17 |
. . 3
β’ ((π β (measuresβπ) β§ π΄ β π) β β
β π) |
23 | | 0red 11217 |
. . 3
β’ ((π β (measuresβπ) β§ π΄ β π) β 0 β β) |
24 | 11, 19, 22, 23 | fvmptd 7006 |
. 2
β’ ((π β (measuresβπ) β§ π΄ β π) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββ
) = 0) |
25 | | measinblem 33249 |
. . . . 5
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β (πβ(βͺ π§ β© π΄)) = Ξ£*π¦ β π§(πβ(π¦ β© π΄))) |
26 | | eqidd 2734 |
. . . . . 6
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β (π₯ β π β¦ (πβ(π₯ β© π΄))) = (π₯ β π β¦ (πβ(π₯ β© π΄)))) |
27 | | ineq1 4206 |
. . . . . . . 8
β’ (π₯ = βͺ
π§ β (π₯ β© π΄) = (βͺ π§ β© π΄)) |
28 | 27 | adantl 483 |
. . . . . . 7
β’
(((((π β
(measuresβπ) β§
π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β§ π₯ = βͺ π§) β (π₯ β© π΄) = (βͺ π§ β© π΄)) |
29 | 28 | fveq2d 6896 |
. . . . . 6
β’
(((((π β
(measuresβπ) β§
π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β§ π₯ = βͺ π§) β (πβ(π₯ β© π΄)) = (πβ(βͺ π§ β© π΄))) |
30 | | simplll 774 |
. . . . . . . 8
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β π β (measuresβπ)) |
31 | 30, 2 | syl 17 |
. . . . . . 7
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β π β βͺ ran
sigAlgebra) |
32 | | simplr 768 |
. . . . . . 7
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β π§ β π« π) |
33 | | simprl 770 |
. . . . . . 7
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β π§ βΌ Ο) |
34 | | sigaclcu 33146 |
. . . . . . 7
β’ ((π β βͺ ran sigAlgebra β§ π§ β π« π β§ π§ βΌ Ο) β βͺ π§
β π) |
35 | 31, 32, 33, 34 | syl3anc 1372 |
. . . . . 6
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β βͺ π§ β π) |
36 | | simpllr 775 |
. . . . . . . 8
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β π΄ β π) |
37 | | inelsiga 33164 |
. . . . . . . 8
β’ ((π β βͺ ran sigAlgebra β§ βͺ π§ β π β§ π΄ β π) β (βͺ π§ β© π΄) β π) |
38 | 31, 35, 36, 37 | syl3anc 1372 |
. . . . . . 7
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β (βͺ π§ β© π΄) β π) |
39 | | measvxrge0 33234 |
. . . . . . 7
β’ ((π β (measuresβπ) β§ (βͺ π§
β© π΄) β π) β (πβ(βͺ π§ β© π΄)) β (0[,]+β)) |
40 | 30, 38, 39 | syl2anc 585 |
. . . . . 6
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β (πβ(βͺ π§ β© π΄)) β (0[,]+β)) |
41 | 26, 29, 35, 40 | fvmptd 7006 |
. . . . 5
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββͺ π§) = (πβ(βͺ π§ β© π΄))) |
42 | | eqidd 2734 |
. . . . . . . 8
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β (π₯ β π β¦ (πβ(π₯ β© π΄))) = (π₯ β π β¦ (πβ(π₯ β© π΄)))) |
43 | | ineq1 4206 |
. . . . . . . . . 10
β’ (π₯ = π¦ β (π₯ β© π΄) = (π¦ β© π΄)) |
44 | 43 | adantl 483 |
. . . . . . . . 9
β’
(((((π β
(measuresβπ) β§
π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β§ π₯ = π¦) β (π₯ β© π΄) = (π¦ β© π΄)) |
45 | 44 | fveq2d 6896 |
. . . . . . . 8
β’
(((((π β
(measuresβπ) β§
π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β§ π₯ = π¦) β (πβ(π₯ β© π΄)) = (πβ(π¦ β© π΄))) |
46 | | elpwi 4610 |
. . . . . . . . . 10
β’ (π§ β π« π β π§ β π) |
47 | 46 | ad2antlr 726 |
. . . . . . . . 9
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β π§ β π) |
48 | | simpr 486 |
. . . . . . . . 9
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β π¦ β π§) |
49 | 47, 48 | sseldd 3984 |
. . . . . . . 8
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β π¦ β π) |
50 | | simplll 774 |
. . . . . . . . 9
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β π β (measuresβπ)) |
51 | 50, 2 | syl 17 |
. . . . . . . . . 10
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β π β βͺ ran
sigAlgebra) |
52 | | simpllr 775 |
. . . . . . . . . 10
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β π΄ β π) |
53 | | inelsiga 33164 |
. . . . . . . . . 10
β’ ((π β βͺ ran sigAlgebra β§ π¦ β π β§ π΄ β π) β (π¦ β© π΄) β π) |
54 | 51, 49, 52, 53 | syl3anc 1372 |
. . . . . . . . 9
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β (π¦ β© π΄) β π) |
55 | | measvxrge0 33234 |
. . . . . . . . 9
β’ ((π β (measuresβπ) β§ (π¦ β© π΄) β π) β (πβ(π¦ β© π΄)) β (0[,]+β)) |
56 | 50, 54, 55 | syl2anc 585 |
. . . . . . . 8
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β (πβ(π¦ β© π΄)) β (0[,]+β)) |
57 | 42, 45, 49, 56 | fvmptd 7006 |
. . . . . . 7
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ π¦ β π§) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦) = (πβ(π¦ β© π΄))) |
58 | 57 | esumeq2dv 33067 |
. . . . . 6
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦) = Ξ£*π¦ β π§(πβ(π¦ β© π΄))) |
59 | 58 | adantr 482 |
. . . . 5
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦) = Ξ£*π¦ β π§(πβ(π¦ β© π΄))) |
60 | 25, 41, 59 | 3eqtr4d 2783 |
. . . 4
β’ ((((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β§ (π§ βΌ Ο β§ Disj π¦ β π§ π¦)) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββͺ π§) = Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦)) |
61 | 60 | ex 414 |
. . 3
β’ (((π β (measuresβπ) β§ π΄ β π) β§ π§ β π« π) β ((π§ βΌ Ο β§ Disj π¦ β π§ π¦) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββͺ π§) = Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦))) |
62 | 61 | ralrimiva 3147 |
. 2
β’ ((π β (measuresβπ) β§ π΄ β π) β βπ§ β π« π((π§ βΌ Ο β§ Disj π¦ β π§ π¦) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββͺ π§) = Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦))) |
63 | | ismeas 33228 |
. . 3
β’ (π β βͺ ran sigAlgebra β ((π₯ β π β¦ (πβ(π₯ β© π΄))) β (measuresβπ) β ((π₯ β π β¦ (πβ(π₯ β© π΄))):πβΆ(0[,]+β) β§ ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββ
) = 0 β§ βπ§ β π« π((π§ βΌ Ο β§ Disj π¦ β π§ π¦) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββͺ π§) = Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦))))) |
64 | 20, 63 | syl 17 |
. 2
β’ ((π β (measuresβπ) β§ π΄ β π) β ((π₯ β π β¦ (πβ(π₯ β© π΄))) β (measuresβπ) β ((π₯ β π β¦ (πβ(π₯ β© π΄))):πβΆ(0[,]+β) β§ ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββ
) = 0 β§ βπ§ β π« π((π§ βΌ Ο β§ Disj π¦ β π§ π¦) β ((π₯ β π β¦ (πβ(π₯ β© π΄)))ββͺ π§) = Ξ£*π¦ β π§((π₯ β π β¦ (πβ(π₯ β© π΄)))βπ¦))))) |
65 | 10, 24, 62, 64 | mpbir3and 1343 |
1
β’ ((π β (measuresβπ) β§ π΄ β π) β (π₯ β π β¦ (πβ(π₯ β© π΄))) β (measuresβπ)) |