Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measinb Structured version   Visualization version   GIF version

Theorem measinb 34204
Description: Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
measinb ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) ∈ (measures‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑀

Proof of Theorem measinb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥𝑆) → 𝑀 ∈ (measures‘𝑆))
2 measbase 34180 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
32ad2antrr 726 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥𝑆) → 𝑆 ran sigAlgebra)
4 simpr 484 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥𝑆) → 𝑥𝑆)
5 simplr 768 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥𝑆) → 𝐴𝑆)
6 inelsiga 34118 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝑥𝑆𝐴𝑆) → (𝑥𝐴) ∈ 𝑆)
73, 4, 5, 6syl3anc 1373 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥𝑆) → (𝑥𝐴) ∈ 𝑆)
8 measvxrge0 34188 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑥𝐴) ∈ 𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
91, 7, 8syl2anc 584 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥𝑆) → (𝑀‘(𝑥𝐴)) ∈ (0[,]+∞))
109fmpttd 7069 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))):𝑆⟶(0[,]+∞))
11 eqidd 2730 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) = (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))))
12 ineq1 4172 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐴) = (∅ ∩ 𝐴))
13 0in 4356 . . . . . . 7 (∅ ∩ 𝐴) = ∅
1412, 13eqtrdi 2780 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴) = ∅)
1514fveq2d 6844 . . . . 5 (𝑥 = ∅ → (𝑀‘(𝑥𝐴)) = (𝑀‘∅))
1615adantl 481 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥 = ∅) → (𝑀‘(𝑥𝐴)) = (𝑀‘∅))
17 measvnul 34189 . . . . 5 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
1817ad2antrr 726 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥 = ∅) → (𝑀‘∅) = 0)
1916, 18eqtrd 2764 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑥 = ∅) → (𝑀‘(𝑥𝐴)) = 0)
202adantr 480 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → 𝑆 ran sigAlgebra)
21 0elsiga 34097 . . . 4 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
2220, 21syl 17 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ∅ ∈ 𝑆)
23 0red 11153 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → 0 ∈ ℝ)
2411, 19, 22, 23fvmptd 6957 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘∅) = 0)
25 measinblem 34203 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → (𝑀‘( 𝑧𝐴)) = Σ*𝑦𝑧(𝑀‘(𝑦𝐴)))
26 eqidd 2730 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) = (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))))
27 ineq1 4172 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐴) = ( 𝑧𝐴))
2827adantl 481 . . . . . . 7 (((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) ∧ 𝑥 = 𝑧) → (𝑥𝐴) = ( 𝑧𝐴))
2928fveq2d 6844 . . . . . 6 (((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) ∧ 𝑥 = 𝑧) → (𝑀‘(𝑥𝐴)) = (𝑀‘( 𝑧𝐴)))
30 simplll 774 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → 𝑀 ∈ (measures‘𝑆))
3130, 2syl 17 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → 𝑆 ran sigAlgebra)
32 simplr 768 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → 𝑧 ∈ 𝒫 𝑆)
33 simprl 770 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → 𝑧 ≼ ω)
34 sigaclcu 34100 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝑧 ∈ 𝒫 𝑆𝑧 ≼ ω) → 𝑧𝑆)
3531, 32, 33, 34syl3anc 1373 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → 𝑧𝑆)
36 simpllr 775 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → 𝐴𝑆)
37 inelsiga 34118 . . . . . . . 8 ((𝑆 ran sigAlgebra ∧ 𝑧𝑆𝐴𝑆) → ( 𝑧𝐴) ∈ 𝑆)
3831, 35, 36, 37syl3anc 1373 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → ( 𝑧𝐴) ∈ 𝑆)
39 measvxrge0 34188 . . . . . . 7 ((𝑀 ∈ (measures‘𝑆) ∧ ( 𝑧𝐴) ∈ 𝑆) → (𝑀‘( 𝑧𝐴)) ∈ (0[,]+∞))
4030, 38, 39syl2anc 584 . . . . . 6 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → (𝑀‘( 𝑧𝐴)) ∈ (0[,]+∞))
4126, 29, 35, 40fvmptd 6957 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘ 𝑧) = (𝑀‘( 𝑧𝐴)))
42 eqidd 2730 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) = (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))))
43 ineq1 4172 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴) = (𝑦𝐴))
4443adantl 481 . . . . . . . . 9 (((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) ∧ 𝑥 = 𝑦) → (𝑥𝐴) = (𝑦𝐴))
4544fveq2d 6844 . . . . . . . 8 (((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) ∧ 𝑥 = 𝑦) → (𝑀‘(𝑥𝐴)) = (𝑀‘(𝑦𝐴)))
46 elpwi 4566 . . . . . . . . . 10 (𝑧 ∈ 𝒫 𝑆𝑧𝑆)
4746ad2antlr 727 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → 𝑧𝑆)
48 simpr 484 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → 𝑦𝑧)
4947, 48sseldd 3944 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → 𝑦𝑆)
50 simplll 774 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → 𝑀 ∈ (measures‘𝑆))
5150, 2syl 17 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → 𝑆 ran sigAlgebra)
52 simpllr 775 . . . . . . . . . 10 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → 𝐴𝑆)
53 inelsiga 34118 . . . . . . . . . 10 ((𝑆 ran sigAlgebra ∧ 𝑦𝑆𝐴𝑆) → (𝑦𝐴) ∈ 𝑆)
5451, 49, 52, 53syl3anc 1373 . . . . . . . . 9 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → (𝑦𝐴) ∈ 𝑆)
55 measvxrge0 34188 . . . . . . . . 9 ((𝑀 ∈ (measures‘𝑆) ∧ (𝑦𝐴) ∈ 𝑆) → (𝑀‘(𝑦𝐴)) ∈ (0[,]+∞))
5650, 54, 55syl2anc 584 . . . . . . . 8 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → (𝑀‘(𝑦𝐴)) ∈ (0[,]+∞))
5742, 45, 49, 56fvmptd 6957 . . . . . . 7 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ 𝑦𝑧) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦) = (𝑀‘(𝑦𝐴)))
5857esumeq2dv 34021 . . . . . 6 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) → Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦) = Σ*𝑦𝑧(𝑀‘(𝑦𝐴)))
5958adantr 480 . . . . 5 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦) = Σ*𝑦𝑧(𝑀‘(𝑦𝐴)))
6025, 41, 593eqtr4d 2774 . . . 4 ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) ∧ (𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦)) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘ 𝑧) = Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦))
6160ex 412 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) ∧ 𝑧 ∈ 𝒫 𝑆) → ((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘ 𝑧) = Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦)))
6261ralrimiva 3125 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘ 𝑧) = Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦)))
63 ismeas 34182 . . 3 (𝑆 ran sigAlgebra → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘∅) = 0 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘ 𝑧) = Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦)))))
6420, 63syl 17 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) ∈ (measures‘𝑆) ↔ ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))):𝑆⟶(0[,]+∞) ∧ ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘∅) = 0 ∧ ∀𝑧 ∈ 𝒫 𝑆((𝑧 ≼ ω ∧ Disj 𝑦𝑧 𝑦) → ((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘ 𝑧) = Σ*𝑦𝑧((𝑥𝑆 ↦ (𝑀‘(𝑥𝐴)))‘𝑦)))))
6510, 24, 62, 64mpbir3and 1343 1 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑥𝑆 ↦ (𝑀‘(𝑥𝐴))) ∈ (measures‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559   cuni 4867  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  cr 11043  0cc0 11044  +∞cpnf 11181  [,]cicc 13285  Σ*cesum 34010  sigAlgebracsiga 34091  measurescmeas 34178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18507  df-tsr 18508  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-abv 20729  df-lmod 20800  df-scaf 20801  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tmd 23992  df-tgp 23993  df-tsms 24047  df-trg 24080  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507  df-ii 24803  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-esum 34011  df-siga 34092  df-meas 34179
This theorem is referenced by:  measinb2  34206  totprobd  34410  probmeasb  34414
  Copyright terms: Public domain W3C validator