Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsup Structured version   Visualization version   GIF version

Theorem esumsup 34120
Description: Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
esumsup.1 (𝜑𝐵 ∈ (0[,]+∞))
esumsup.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsup (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumsup
StepHypRef Expression
1 esumsup.2 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
21fmpttd 7105 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶(0[,]+∞))
3 nfmpt1 5220 . . . 4 𝑘(𝑘 ∈ ℕ ↦ 𝐴)
43esumfsup 34101 . . 3 ((𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ ℕ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = sup(ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)), ℝ*, < ))
52, 4syl 17 . 2 (𝜑 → Σ*𝑘 ∈ ℕ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = sup(ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)), ℝ*, < ))
6 simpr 484 . . . 4 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
7 eqid 2735 . . . . 5 (𝑘 ∈ ℕ ↦ 𝐴) = (𝑘 ∈ ℕ ↦ 𝐴)
87fvmpt2 6997 . . . 4 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ (0[,]+∞)) → ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = 𝐴)
96, 1, 8syl2anc 584 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = 𝐴)
109esumeq2dv 34069 . 2 (𝜑 → Σ*𝑘 ∈ ℕ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = Σ*𝑘 ∈ ℕ𝐴)
11 1z 12622 . . . . . . . . 9 1 ∈ ℤ
12 seqfn 14031 . . . . . . . . 9 (1 ∈ ℤ → seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn (ℤ‘1))
1311, 12ax-mp 5 . . . . . . . 8 seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn (ℤ‘1)
14 nnuz 12895 . . . . . . . . 9 ℕ = (ℤ‘1)
1514fneq2i 6636 . . . . . . . 8 (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn ℕ ↔ seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn (ℤ‘1))
1613, 15mpbir 231 . . . . . . 7 seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn ℕ
17 nfcv 2898 . . . . . . . 8 𝑛seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))
1817dffn5f 6950 . . . . . . 7 (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) Fn ℕ ↔ seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛)))
1916, 18mpbi 230 . . . . . 6 seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
2019a1i 11 . . . . 5 (𝜑 → seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛)))
21 fz1ssnn 13572 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
2322sselda 3958 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
24 simpll 766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
2524, 23, 1syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
2623, 25, 8syl2anc 584 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = 𝐴)
2726esumeq2dv 34069 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = Σ*𝑘 ∈ (1...𝑛)𝐴)
283esumfzf 34100 . . . . . . . 8 (((𝑘 ∈ ℕ ↦ 𝐴):ℕ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
292, 28sylan 580 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)((𝑘 ∈ ℕ ↦ 𝐴)‘𝑘) = (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
3027, 29eqtr3d 2772 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛))
3130mpteq2dva 5214 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ (seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴))‘𝑛)))
3220, 31eqtr4d 2773 . . . 4 (𝜑 → seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
3332rneqd 5918 . . 3 (𝜑 → ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)) = ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
3433supeq1d 9458 . 2 (𝜑 → sup(ran seq1( +𝑒 , (𝑘 ∈ ℕ ↦ 𝐴)), ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ))
355, 10, 343eqtr3d 2778 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  cmpt 5201  ran crn 5655   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  0cc0 11129  1c1 11130  +∞cpnf 11266  *cxr 11268   < clt 11269  cn 12240  cz 12588  cuz 12852   +𝑒 cxad 13126  [,]cicc 13365  ...cfz 13524  seqcseq 14019  Σ*cesum 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-ordt 17515  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-ps 18576  df-tsr 18577  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-abv 20769  df-lmod 20819  df-scaf 20820  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-tmd 24010  df-tgp 24011  df-tsms 24065  df-trg 24098  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522  df-nrg 24524  df-nlm 24525  df-ii 24821  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-esum 34059
This theorem is referenced by:  esumgect  34121
  Copyright terms: Public domain W3C validator