![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > totprobd | Structured version Visualization version GIF version |
Description: Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
totprobd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
totprobd.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) |
totprobd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) |
totprobd.4 | ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) |
totprobd.5 | ⊢ (𝜑 → 𝐵 ≼ ω) |
totprobd.6 | ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) |
Ref | Expression |
---|---|
totprobd | ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | totprobd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) | |
2 | elssuni 4945 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ∪ dom 𝑃) |
4 | totprobd.4 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) | |
5 | 3, 4 | sseqtrrd 4021 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
6 | sseqin2 4216 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ (∪ 𝐵 ∩ 𝐴) = 𝐴) | |
7 | 5, 6 | sylib 217 | . . 3 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐴) = 𝐴) |
8 | 7 | fveq2d 6905 | . 2 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) = (𝑃‘𝐴)) |
9 | totprobd.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
10 | domprobmeas 34244 | . . . . . 6 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (measures‘dom 𝑃)) |
12 | measinb 34054 | . . . . 5 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐴 ∈ dom 𝑃) → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃)) | |
13 | 11, 1, 12 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃)) |
14 | totprobd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) | |
15 | totprobd.5 | . . . 4 ⊢ (𝜑 → 𝐵 ≼ ω) | |
16 | totprobd.6 | . . . 4 ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) | |
17 | measvun 34042 | . . . 4 ⊢ (((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃) ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ (𝐵 ≼ ω ∧ Disj 𝑏 ∈ 𝐵 𝑏)) → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏)) | |
18 | 13, 14, 15, 16, 17 | syl112anc 1371 | . . 3 ⊢ (𝜑 → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏)) |
19 | eqidd 2727 | . . . 4 ⊢ (𝜑 → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) = (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))) | |
20 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → 𝑐 = ∪ 𝐵) | |
21 | 20 | ineq1d 4212 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → (𝑐 ∩ 𝐴) = (∪ 𝐵 ∩ 𝐴)) |
22 | 21 | fveq2d 6905 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → (𝑃‘(𝑐 ∩ 𝐴)) = (𝑃‘(∪ 𝐵 ∩ 𝐴))) |
23 | domprobsiga 34245 | . . . . . 6 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
25 | sigaclcu 33950 | . . . . 5 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ dom 𝑃) | |
26 | 24, 14, 15, 25 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 ∈ dom 𝑃) |
27 | inelsiga 33968 | . . . . . 6 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∪ 𝐵 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) | |
28 | 24, 26, 1, 27 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) |
29 | prob01 34247 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) → (𝑃‘(∪ 𝐵 ∩ 𝐴)) ∈ (0[,]1)) | |
30 | 9, 28, 29 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) ∈ (0[,]1)) |
31 | 19, 22, 26, 30 | fvmptd 7016 | . . 3 ⊢ (𝜑 → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = (𝑃‘(∪ 𝐵 ∩ 𝐴))) |
32 | eqidd 2727 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) = (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))) | |
33 | simpr 483 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → 𝑐 = 𝑏) | |
34 | 33 | ineq1d 4212 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → (𝑐 ∩ 𝐴) = (𝑏 ∩ 𝐴)) |
35 | 34 | fveq2d 6905 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → (𝑃‘(𝑐 ∩ 𝐴)) = (𝑃‘(𝑏 ∩ 𝐴))) |
36 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
37 | 14 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐵 ∈ 𝒫 dom 𝑃) |
38 | elelpwi 4617 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 dom 𝑃) → 𝑏 ∈ dom 𝑃) | |
39 | 36, 37, 38 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ dom 𝑃) |
40 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑃 ∈ Prob) |
41 | 24 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → dom 𝑃 ∈ ∪ ran sigAlgebra) |
42 | 1 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ dom 𝑃) |
43 | inelsiga 33968 | . . . . . . 7 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝑏 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (𝑏 ∩ 𝐴) ∈ dom 𝑃) | |
44 | 41, 39, 42, 43 | syl3anc 1368 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∩ 𝐴) ∈ dom 𝑃) |
45 | prob01 34247 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ (𝑏 ∩ 𝐴) ∈ dom 𝑃) → (𝑃‘(𝑏 ∩ 𝐴)) ∈ (0[,]1)) | |
46 | 40, 44, 45 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑃‘(𝑏 ∩ 𝐴)) ∈ (0[,]1)) |
47 | 32, 35, 39, 46 | fvmptd 7016 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏) = (𝑃‘(𝑏 ∩ 𝐴))) |
48 | 47 | esumeq2dv 33871 | . . 3 ⊢ (𝜑 → Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
49 | 18, 31, 48 | 3eqtr3d 2774 | . 2 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
50 | 8, 49 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4607 ∪ cuni 4913 Disj wdisj 5118 class class class wbr 5153 ↦ cmpt 5236 dom cdm 5682 ran crn 5683 ‘cfv 6554 (class class class)co 7424 ωcom 7876 ≼ cdom 8972 0cc0 11158 1c1 11159 [,]cicc 13381 Σ*cesum 33860 sigAlgebracsiga 33941 measurescmeas 34028 Probcprb 34241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-ac2 10506 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-disj 5119 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-dju 9944 df-card 9982 df-acn 9985 df-ac 10159 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ioc 13383 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-shft 15072 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-ef 16069 df-sin 16071 df-cos 16072 df-pi 16074 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-ordt 17516 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-ps 18591 df-tsr 18592 df-plusf 18632 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-cntz 19311 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-subrng 20528 df-subrg 20553 df-abv 20788 df-lmod 20838 df-scaf 20839 df-sra 21151 df-rgmod 21152 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-lp 23131 df-perf 23132 df-cn 23222 df-cnp 23223 df-haus 23310 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-tmd 24067 df-tgp 24068 df-tsms 24122 df-trg 24155 df-xms 24317 df-ms 24318 df-tms 24319 df-nm 24582 df-ngp 24583 df-nrg 24585 df-nlm 24586 df-ii 24888 df-cncf 24889 df-limc 25886 df-dv 25887 df-log 26583 df-esum 33861 df-siga 33942 df-meas 34029 df-prob 34242 |
This theorem is referenced by: totprob 34261 |
Copyright terms: Public domain | W3C validator |