| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > totprobd | Structured version Visualization version GIF version | ||
| Description: Law of total probability, deduction form. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| totprobd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| totprobd.2 | ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) |
| totprobd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) |
| totprobd.4 | ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) |
| totprobd.5 | ⊢ (𝜑 → 𝐵 ≼ ω) |
| totprobd.6 | ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) |
| Ref | Expression |
|---|---|
| totprobd | ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | totprobd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ dom 𝑃) | |
| 2 | elssuni 4911 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ∪ dom 𝑃) |
| 4 | totprobd.4 | . . . . 5 ⊢ (𝜑 → ∪ 𝐵 = ∪ dom 𝑃) | |
| 5 | 3, 4 | sseqtrrd 3994 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐵) |
| 6 | sseqin2 4196 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ (∪ 𝐵 ∩ 𝐴) = 𝐴) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐴) = 𝐴) |
| 8 | 7 | fveq2d 6877 | . 2 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) = (𝑃‘𝐴)) |
| 9 | totprobd.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 10 | domprobmeas 34371 | . . . . . 6 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (measures‘dom 𝑃)) |
| 12 | measinb 34181 | . . . . 5 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐴 ∈ dom 𝑃) → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃)) | |
| 13 | 11, 1, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃)) |
| 14 | totprobd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝒫 dom 𝑃) | |
| 15 | totprobd.5 | . . . 4 ⊢ (𝜑 → 𝐵 ≼ ω) | |
| 16 | totprobd.6 | . . . 4 ⊢ (𝜑 → Disj 𝑏 ∈ 𝐵 𝑏) | |
| 17 | measvun 34169 | . . . 4 ⊢ (((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) ∈ (measures‘dom 𝑃) ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ (𝐵 ≼ ω ∧ Disj 𝑏 ∈ 𝐵 𝑏)) → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏)) | |
| 18 | 13, 14, 15, 16, 17 | syl112anc 1375 | . . 3 ⊢ (𝜑 → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏)) |
| 19 | eqidd 2735 | . . . 4 ⊢ (𝜑 → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) = (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))) | |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → 𝑐 = ∪ 𝐵) | |
| 21 | 20 | ineq1d 4192 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → (𝑐 ∩ 𝐴) = (∪ 𝐵 ∩ 𝐴)) |
| 22 | 21 | fveq2d 6877 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = ∪ 𝐵) → (𝑃‘(𝑐 ∩ 𝐴)) = (𝑃‘(∪ 𝐵 ∩ 𝐴))) |
| 23 | domprobsiga 34372 | . . . . . 6 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 25 | sigaclcu 34077 | . . . . 5 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 dom 𝑃 ∧ 𝐵 ≼ ω) → ∪ 𝐵 ∈ dom 𝑃) | |
| 26 | 24, 14, 15, 25 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → ∪ 𝐵 ∈ dom 𝑃) |
| 27 | inelsiga 34095 | . . . . . 6 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ ∪ 𝐵 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) | |
| 28 | 24, 26, 1, 27 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) |
| 29 | prob01 34374 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ (∪ 𝐵 ∩ 𝐴) ∈ dom 𝑃) → (𝑃‘(∪ 𝐵 ∩ 𝐴)) ∈ (0[,]1)) | |
| 30 | 9, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) ∈ (0[,]1)) |
| 31 | 19, 22, 26, 30 | fvmptd 6990 | . . 3 ⊢ (𝜑 → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘∪ 𝐵) = (𝑃‘(∪ 𝐵 ∩ 𝐴))) |
| 32 | eqidd 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴))) = (𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))) | |
| 33 | simpr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → 𝑐 = 𝑏) | |
| 34 | 33 | ineq1d 4192 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → (𝑐 ∩ 𝐴) = (𝑏 ∩ 𝐴)) |
| 35 | 34 | fveq2d 6877 | . . . . 5 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 = 𝑏) → (𝑃‘(𝑐 ∩ 𝐴)) = (𝑃‘(𝑏 ∩ 𝐴))) |
| 36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) | |
| 37 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐵 ∈ 𝒫 dom 𝑃) |
| 38 | elelpwi 4583 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 dom 𝑃) → 𝑏 ∈ dom 𝑃) | |
| 39 | 36, 37, 38 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ dom 𝑃) |
| 40 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑃 ∈ Prob) |
| 41 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 42 | 1 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐴 ∈ dom 𝑃) |
| 43 | inelsiga 34095 | . . . . . . 7 ⊢ ((dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝑏 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃) → (𝑏 ∩ 𝐴) ∈ dom 𝑃) | |
| 44 | 41, 39, 42, 43 | syl3anc 1372 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∩ 𝐴) ∈ dom 𝑃) |
| 45 | prob01 34374 | . . . . . 6 ⊢ ((𝑃 ∈ Prob ∧ (𝑏 ∩ 𝐴) ∈ dom 𝑃) → (𝑃‘(𝑏 ∩ 𝐴)) ∈ (0[,]1)) | |
| 46 | 40, 44, 45 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑃‘(𝑏 ∩ 𝐴)) ∈ (0[,]1)) |
| 47 | 32, 35, 39, 46 | fvmptd 6990 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏) = (𝑃‘(𝑏 ∩ 𝐴))) |
| 48 | 47 | esumeq2dv 33998 | . . 3 ⊢ (𝜑 → Σ*𝑏 ∈ 𝐵((𝑐 ∈ dom 𝑃 ↦ (𝑃‘(𝑐 ∩ 𝐴)))‘𝑏) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
| 49 | 18, 31, 48 | 3eqtr3d 2777 | . 2 ⊢ (𝜑 → (𝑃‘(∪ 𝐵 ∩ 𝐴)) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
| 50 | 8, 49 | eqtr3d 2771 | 1 ⊢ (𝜑 → (𝑃‘𝐴) = Σ*𝑏 ∈ 𝐵(𝑃‘(𝑏 ∩ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 ⊆ wss 3924 𝒫 cpw 4573 ∪ cuni 4881 Disj wdisj 5084 class class class wbr 5117 ↦ cmpt 5199 dom cdm 5652 ran crn 5653 ‘cfv 6528 (class class class)co 7400 ωcom 7856 ≼ cdom 8952 0cc0 11122 1c1 11123 [,]cicc 13357 Σ*cesum 33987 sigAlgebracsiga 34068 measurescmeas 34155 Probcprb 34368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 ax-ac2 10470 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 ax-addf 11201 ax-mulf 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-disj 5085 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-pm 8838 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-fi 9418 df-sup 9449 df-inf 9450 df-oi 9517 df-dju 9908 df-card 9946 df-acn 9949 df-ac 10123 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-q 12958 df-rp 13002 df-xneg 13121 df-xadd 13122 df-xmul 13123 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13662 df-fl 13799 df-mod 13877 df-seq 14010 df-exp 14070 df-fac 14282 df-bc 14311 df-hash 14339 df-shft 15075 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-limsup 15476 df-clim 15493 df-rlim 15494 df-sum 15692 df-ef 16072 df-sin 16074 df-cos 16075 df-pi 16077 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-starv 17273 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-unif 17281 df-hom 17282 df-cco 17283 df-rest 17423 df-topn 17424 df-0g 17442 df-gsum 17443 df-topgen 17444 df-pt 17445 df-prds 17448 df-ordt 17502 df-xrs 17503 df-qtop 17508 df-imas 17509 df-xps 17511 df-mre 17585 df-mrc 17586 df-acs 17588 df-ps 18563 df-tsr 18564 df-plusf 18604 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18748 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-mulg 19038 df-subg 19093 df-cntz 19287 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-cring 20183 df-subrng 20493 df-subrg 20517 df-abv 20756 df-lmod 20806 df-scaf 20807 df-sra 21118 df-rgmod 21119 df-psmet 21294 df-xmet 21295 df-met 21296 df-bl 21297 df-mopn 21298 df-fbas 21299 df-fg 21300 df-cnfld 21303 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-tmd 23997 df-tgp 23998 df-tsms 24052 df-trg 24085 df-xms 24246 df-ms 24247 df-tms 24248 df-nm 24508 df-ngp 24509 df-nrg 24511 df-nlm 24512 df-ii 24808 df-cncf 24809 df-limc 25806 df-dv 25807 df-log 26503 df-esum 33988 df-siga 34069 df-meas 34156 df-prob 34369 |
| This theorem is referenced by: totprob 34388 |
| Copyright terms: Public domain | W3C validator |