Step | Hyp | Ref
| Expression |
1 | | funmpt 6583 |
. . . . . 6
⊢ Fun
(𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) |
2 | | ovex 7437 |
. . . . . . . 8
⊢ ((𝑀‘𝑥) /𝑒 𝐴) ∈ V |
3 | 2 | rgenw 3066 |
. . . . . . 7
⊢
∀𝑥 ∈
𝑆 ((𝑀‘𝑥) /𝑒 𝐴) ∈ V |
4 | | dmmptg 6238 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ((𝑀‘𝑥) /𝑒 𝐴) ∈ V → dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = 𝑆) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ dom
(𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = 𝑆 |
6 | | df-fn 6543 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) Fn 𝑆 ↔ (Fun (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∧ dom (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = 𝑆)) |
7 | 1, 5, 6 | mpbir2an 710 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) Fn 𝑆 |
8 | 7 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) Fn 𝑆) |
9 | | vex 3479 |
. . . . . . 7
⊢ 𝑦 ∈ V |
10 | | eqid 2733 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) = (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) |
11 | 10 | elrnmpt 5953 |
. . . . . . 7
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ↔ ∃𝑥 ∈ 𝑆 𝑦 = ((𝑀‘𝑥) /𝑒 𝐴))) |
12 | 9, 11 | ax-mp 5 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ↔ ∃𝑥 ∈ 𝑆 𝑦 = ((𝑀‘𝑥) /𝑒 𝐴)) |
13 | | measfrge0 33139 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑀:𝑆⟶(0[,]+∞)) |
14 | | ffvelcdm 7079 |
. . . . . . . . . . 11
⊢ ((𝑀:𝑆⟶(0[,]+∞) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) |
15 | 13, 14 | sylan 581 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) |
16 | 15 | adantlr 714 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑀‘𝑥) ∈ (0[,]+∞)) |
17 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈
ℝ+) |
18 | 16, 17 | xrpxdivcld 32079 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → ((𝑀‘𝑥) /𝑒 𝐴) ∈ (0[,]+∞)) |
19 | | eleq1a 2829 |
. . . . . . . 8
⊢ (((𝑀‘𝑥) /𝑒 𝐴) ∈ (0[,]+∞) → (𝑦 = ((𝑀‘𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞))) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑥 ∈ 𝑆) → (𝑦 = ((𝑀‘𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞))) |
21 | 20 | rexlimdva 3156 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) →
(∃𝑥 ∈ 𝑆 𝑦 = ((𝑀‘𝑥) /𝑒 𝐴) → 𝑦 ∈ (0[,]+∞))) |
22 | 12, 21 | biimtrid 241 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑦 ∈ ran (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) → 𝑦 ∈ (0[,]+∞))) |
23 | 22 | ssrdv 3987 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ran
(𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ⊆ (0[,]+∞)) |
24 | | df-f 6544 |
. . . 4
⊢ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) Fn 𝑆 ∧ ran (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ⊆ (0[,]+∞))) |
25 | 8, 23, 24 | sylanbrc 584 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞)) |
26 | | measbase 33133 |
. . . . . . . 8
⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran
sigAlgebra) |
27 | | 0elsiga 33050 |
. . . . . . . 8
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ (measures‘𝑆) → ∅ ∈ 𝑆) |
29 | 28 | adantr 482 |
. . . . . 6
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ∅
∈ 𝑆) |
30 | | ovex 7437 |
. . . . . 6
⊢ ((𝑀‘∅)
/𝑒 𝐴)
∈ V |
31 | 29, 30 | jctir 522 |
. . . . 5
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (∅
∈ 𝑆 ∧ ((𝑀‘∅)
/𝑒 𝐴)
∈ V)) |
32 | | fveq2 6888 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝑀‘𝑥) = (𝑀‘∅)) |
33 | 32 | oveq1d 7419 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘∅) /𝑒 𝐴)) |
34 | 33, 10 | fvmptg 6992 |
. . . . 5
⊢ ((∅
∈ 𝑆 ∧ ((𝑀‘∅)
/𝑒 𝐴)
∈ V) → ((𝑥 ∈
𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴)) |
35 | 31, 34 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = ((𝑀‘∅) /𝑒 𝐴)) |
36 | | measvnul 33142 |
. . . . . 6
⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) |
37 | 36 | oveq1d 7419 |
. . . . 5
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝑀‘∅) /𝑒 𝐴) = (0 /𝑒
𝐴)) |
38 | | xdiv0rp 32074 |
. . . . 5
⊢ (𝐴 ∈ ℝ+
→ (0 /𝑒 𝐴) = 0) |
39 | 37, 38 | sylan9eq 2793 |
. . . 4
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑀‘∅)
/𝑒 𝐴) =
0) |
40 | 35, 39 | eqtrd 2773 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0) |
41 | | simpll 766 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈
ℝ+)) |
42 | | simplr 768 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆) |
43 | | simprl 770 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ≼ ω) |
44 | | simprr 772 |
. . . . . . 7
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Disj 𝑧 ∈ 𝑦 𝑧) |
45 | 42, 43, 44 | 3jca 1129 |
. . . . . 6
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) |
46 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝑦 ∈ V) |
47 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑀 ∈ (measures‘𝑆)) |
48 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑦 ∈ 𝒫 𝑆) |
49 | | simpr 486 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑦) |
50 | | elpwg 4604 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ V → (𝑦 ∈ 𝒫 𝑆 ↔ 𝑦 ⊆ 𝑆)) |
51 | 9, 50 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝒫 𝑆 ↔ 𝑦 ⊆ 𝑆) |
52 | | ssel2 3976 |
. . . . . . . . . . . 12
⊢ ((𝑦 ⊆ 𝑆 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) |
53 | 51, 52 | sylanb 582 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) |
54 | 48, 49, 53 | syl2anc 585 |
. . . . . . . . . 10
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → 𝑧 ∈ 𝑆) |
55 | | measvxrge0 33141 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
56 | 47, 54, 55 | syl2anc 585 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ 𝑧 ∈ 𝑦) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
57 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → 𝐴 ∈
ℝ+) |
58 | 46, 56, 57 | esumdivc 33019 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) →
(Σ*𝑧
∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
59 | 58 | 3ad2antr1 1189 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
60 | 26 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
61 | | simpr1 1195 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ∈ 𝒫 𝑆) |
62 | | simpr2 1196 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑦 ≼ ω) |
63 | | sigaclcu 33053 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω) → ∪ 𝑦
∈ 𝑆) |
64 | 60, 61, 62, 63 | syl3anc 1372 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ∪ 𝑦 ∈ 𝑆) |
65 | | fveq2 6888 |
. . . . . . . . . . 11
⊢ (𝑥 = ∪
𝑦 → (𝑀‘𝑥) = (𝑀‘∪ 𝑦)) |
66 | 65 | oveq1d 7419 |
. . . . . . . . . 10
⊢ (𝑥 = ∪
𝑦 → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) |
67 | 66, 10, 2 | fvmpt3i 6999 |
. . . . . . . . 9
⊢ (∪ 𝑦
∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) |
68 | 64, 67 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = ((𝑀‘∪ 𝑦) /𝑒 𝐴)) |
69 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → 𝑀 ∈ (measures‘𝑆)) |
70 | 69, 61 | jca 513 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆)) |
71 | | simpr3 1197 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Disj 𝑧 ∈ 𝑦 𝑧) |
72 | 62, 71 | jca 513 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) |
73 | | measvun 33145 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧)) |
74 | 73 | 3expia 1122 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧))) |
75 | 74 | ralrimiva 3147 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (measures‘𝑆) → ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧))) |
76 | 75 | r19.21bi 3249 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧))) |
77 | 70, 72, 76 | sylc 65 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → (𝑀‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦(𝑀‘𝑧)) |
78 | 77 | oveq1d 7419 |
. . . . . . . 8
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑀‘∪ 𝑦) /𝑒 𝐴) = (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴)) |
79 | 68, 78 | eqtrd 2773 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = (Σ*𝑧 ∈ 𝑦(𝑀‘𝑧) /𝑒 𝐴)) |
80 | | fveq2 6888 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑀‘𝑥) = (𝑀‘𝑧)) |
81 | 80 | oveq1d 7419 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑀‘𝑥) /𝑒 𝐴) = ((𝑀‘𝑧) /𝑒 𝐴)) |
82 | 81, 10, 2 | fvmpt3i 6999 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀‘𝑧) /𝑒 𝐴)) |
83 | 53, 82 | syl 17 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝒫 𝑆 ∧ 𝑧 ∈ 𝑦) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = ((𝑀‘𝑧) /𝑒 𝐴)) |
84 | 83 | esumeq2dv 32974 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝒫 𝑆 → Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
85 | 61, 84 | syl 17 |
. . . . . . 7
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧) = Σ*𝑧 ∈ 𝑦((𝑀‘𝑧) /𝑒 𝐴)) |
86 | 59, 79, 85 | 3eqtr4d 2783 |
. . . . . 6
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ (𝑦 ∈ 𝒫 𝑆 ∧ 𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)) |
87 | 41, 45, 86 | syl2anc 585 |
. . . . 5
⊢ ((((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) ∧ (𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧)) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)) |
88 | 87 | ex 414 |
. . . 4
⊢ (((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) ∧ 𝑦 ∈ 𝒫 𝑆) → ((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) |
89 | 88 | ralrimiva 3147 |
. . 3
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) →
∀𝑦 ∈ 𝒫
𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) |
90 | 25, 40, 89 | 3jca 1129 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧)))) |
91 | | ismeas 33135 |
. . . . 5
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))))) |
92 | 26, 91 | syl 17 |
. . . 4
⊢ (𝑀 ∈ (measures‘𝑆) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆) ↔ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))))) |
93 | 92 | biimprd 247 |
. . 3
⊢ (𝑀 ∈ (measures‘𝑆) → (((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))) |
94 | 93 | adantr 482 |
. 2
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)):𝑆⟶(0[,]+∞) ∧ ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∅) = 0 ∧ ∀𝑦 ∈ 𝒫 𝑆((𝑦 ≼ ω ∧ Disj 𝑧 ∈ 𝑦 𝑧) → ((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘∪ 𝑦) = Σ*𝑧 ∈ 𝑦((𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴))‘𝑧))) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆))) |
95 | 90, 94 | mpd 15 |
1
⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ ℝ+) → (𝑥 ∈ 𝑆 ↦ ((𝑀‘𝑥) /𝑒 𝐴)) ∈ (measures‘𝑆)) |