Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumdivc Structured version   Visualization version   GIF version

Theorem esumdivc 34094
Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esumdivc.a (𝜑𝐴𝑉)
esumdivc.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumdivc.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
esumdivc (𝜑 → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = Σ*𝑘𝐴(𝐵 /𝑒 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esumdivc
StepHypRef Expression
1 esumdivc.a . . 3 (𝜑𝐴𝑉)
2 esumdivc.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
3 1red 11113 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 esumdivc.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
54rpred 12934 . . . . 5 (𝜑𝐶 ∈ ℝ)
64rpne0d 12939 . . . . 5 (𝜑𝐶 ≠ 0)
7 rexdiv 32904 . . . . 5 ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶))
83, 5, 6, 7syl3anc 1373 . . . 4 (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶))
9 ioorp 13325 . . . . . 6 (0(,)+∞) = ℝ+
10 ioossico 13338 . . . . . 6 (0(,)+∞) ⊆ (0[,)+∞)
119, 10eqsstrri 3982 . . . . 5 + ⊆ (0[,)+∞)
124rpreccld 12944 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℝ+)
1311, 12sselid 3932 . . . 4 (𝜑 → (1 / 𝐶) ∈ (0[,)+∞))
148, 13eqeltrd 2831 . . 3 (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞))
151, 2, 14esummulc1 34092 . 2 (𝜑 → (Σ*𝑘𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘𝐴(𝐵 ·e (1 /𝑒 𝐶)))
16 iccssxr 13330 . . . 4 (0[,]+∞) ⊆ ℝ*
172ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
18 nfcv 2894 . . . . . 6 𝑘𝐴
1918esumcl 34041 . . . . 5 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
201, 17, 19syl2anc 584 . . . 4 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
2116, 20sselid 3932 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
22 xdivrec 32905 . . 3 ((Σ*𝑘𝐴𝐵 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘𝐴𝐵 ·e (1 /𝑒 𝐶)))
2321, 5, 6, 22syl3anc 1373 . 2 (𝜑 → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘𝐴𝐵 ·e (1 /𝑒 𝐶)))
2416, 2sselid 3932 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
255adantr 480 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
266adantr 480 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
27 xdivrec 32905 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶)))
2824, 25, 26, 27syl3anc 1373 . . 3 ((𝜑𝑘𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶)))
2928esumeq2dv 34049 . 2 (𝜑 → Σ*𝑘𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘𝐴(𝐵 ·e (1 /𝑒 𝐶)))
3015, 23, 293eqtr4d 2776 1 (𝜑 → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = Σ*𝑘𝐴(𝐵 /𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007  +∞cpnf 11143  *cxr 11145   / cdiv 11774  +crp 12890   ·e cxmu 13010  (,)cioo 13245  [,)cico 13247  [,]cicc 13248   /𝑒 cxdiv 32895  Σ*cesum 34038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-ordt 17405  df-xrs 17406  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-cntz 19230  df-cmn 19695  df-fbas 21289  df-fg 21290  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-ntr 22936  df-nei 23014  df-cn 23143  df-cnp 23144  df-haus 23231  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-tsms 24043  df-xdiv 32896  df-esum 34039
This theorem is referenced by:  measdivcst  34235  measdivcstALTV  34236
  Copyright terms: Public domain W3C validator