Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumdivc | Structured version Visualization version GIF version |
Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
Ref | Expression |
---|---|
esumdivc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumdivc.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumdivc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
esumdivc | ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumdivc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumdivc.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
3 | 1red 10693 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
4 | esumdivc.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
5 | 4 | rpred 12485 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 4 | rpne0d 12490 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
7 | rexdiv 30737 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶)) | |
8 | 3, 5, 6, 7 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶)) |
9 | ioorp 12870 | . . . . . 6 ⊢ (0(,)+∞) = ℝ+ | |
10 | ioossico 12883 | . . . . . 6 ⊢ (0(,)+∞) ⊆ (0[,)+∞) | |
11 | 9, 10 | eqsstrri 3929 | . . . . 5 ⊢ ℝ+ ⊆ (0[,)+∞) |
12 | 4 | rpreccld 12495 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
13 | 11, 12 | sseldi 3892 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ (0[,)+∞)) |
14 | 8, 13 | eqeltrd 2852 | . . 3 ⊢ (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞)) |
15 | 1, 2, 14 | esummulc1 31581 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
16 | iccssxr 12875 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
17 | 2 | ralrimiva 3113 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
18 | nfcv 2919 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
19 | 18 | esumcl 31530 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
20 | 1, 17, 19 | syl2anc 587 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
21 | 16, 20 | sseldi 3892 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
22 | xdivrec 30738 | . . 3 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) | |
23 | 21, 5, 6, 22 | syl3anc 1368 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) |
24 | 16, 2 | sseldi 3892 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
25 | 5 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
26 | 6 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
27 | xdivrec 30738 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) | |
28 | 24, 25, 26, 27 | syl3anc 1368 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) |
29 | 28 | esumeq2dv 31538 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
30 | 15, 23, 29 | 3eqtr4d 2803 | 1 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 (class class class)co 7156 ℝcr 10587 0cc0 10588 1c1 10589 +∞cpnf 10723 ℝ*cxr 10725 / cdiv 11348 ℝ+crp 12443 ·e cxmu 12560 (,)cioo 12792 [,)cico 12794 [,]cicc 12795 /𝑒 cxdiv 30728 Σ*cesum 31527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ioc 12797 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-tset 16656 df-ple 16657 df-ds 16659 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-ordt 16846 df-xrs 16847 df-mre 16929 df-mrc 16930 df-acs 16932 df-ps 17890 df-tsr 17891 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-submnd 18037 df-cntz 18528 df-cmn 18989 df-fbas 20177 df-fg 20178 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-ntr 21734 df-nei 21812 df-cn 21941 df-cnp 21942 df-haus 22029 df-fil 22560 df-fm 22652 df-flim 22653 df-flf 22654 df-tsms 22841 df-xdiv 30729 df-esum 31528 |
This theorem is referenced by: measdivcst 31724 measdivcstALTV 31725 |
Copyright terms: Public domain | W3C validator |