![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumdivc | Structured version Visualization version GIF version |
Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
Ref | Expression |
---|---|
esumdivc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumdivc.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumdivc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
esumdivc | ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumdivc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumdivc.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
3 | 1red 11260 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
4 | esumdivc.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
5 | 4 | rpred 13075 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 4 | rpne0d 13080 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
7 | rexdiv 32893 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶)) | |
8 | 3, 5, 6, 7 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶)) |
9 | ioorp 13462 | . . . . . 6 ⊢ (0(,)+∞) = ℝ+ | |
10 | ioossico 13475 | . . . . . 6 ⊢ (0(,)+∞) ⊆ (0[,)+∞) | |
11 | 9, 10 | eqsstrri 4031 | . . . . 5 ⊢ ℝ+ ⊆ (0[,)+∞) |
12 | 4 | rpreccld 13085 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
13 | 11, 12 | sselid 3993 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ (0[,)+∞)) |
14 | 8, 13 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞)) |
15 | 1, 2, 14 | esummulc1 34062 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
16 | iccssxr 13467 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
17 | 2 | ralrimiva 3144 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
18 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
19 | 18 | esumcl 34011 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
20 | 1, 17, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
21 | 16, 20 | sselid 3993 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
22 | xdivrec 32894 | . . 3 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) | |
23 | 21, 5, 6, 22 | syl3anc 1370 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) |
24 | 16, 2 | sselid 3993 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
25 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
26 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
27 | xdivrec 32894 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) | |
28 | 24, 25, 26, 27 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) |
29 | 28 | esumeq2dv 34019 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
30 | 15, 23, 29 | 3eqtr4d 2785 | 1 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 +∞cpnf 11290 ℝ*cxr 11292 / cdiv 11918 ℝ+crp 13032 ·e cxmu 13151 (,)cioo 13384 [,)cico 13386 [,]cicc 13387 /𝑒 cxdiv 32884 Σ*cesum 34008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-tset 17317 df-ple 17318 df-ds 17320 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-ordt 17548 df-xrs 17549 df-mre 17631 df-mrc 17632 df-acs 17634 df-ps 18624 df-tsr 18625 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-cntz 19348 df-cmn 19815 df-fbas 21379 df-fg 21380 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-ntr 23044 df-nei 23122 df-cn 23251 df-cnp 23252 df-haus 23339 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-tsms 24151 df-xdiv 32885 df-esum 34009 |
This theorem is referenced by: measdivcst 34205 measdivcstALTV 34206 |
Copyright terms: Public domain | W3C validator |