| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumdivc | Structured version Visualization version GIF version | ||
| Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| Ref | Expression |
|---|---|
| esumdivc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumdivc.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumdivc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| esumdivc | ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumdivc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | esumdivc.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 3 | 1red 11122 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | esumdivc.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 5 | 4 | rpred 12938 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | 4 | rpne0d 12943 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 7 | rexdiv 32915 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶)) |
| 9 | ioorp 13329 | . . . . . 6 ⊢ (0(,)+∞) = ℝ+ | |
| 10 | ioossico 13342 | . . . . . 6 ⊢ (0(,)+∞) ⊆ (0[,)+∞) | |
| 11 | 9, 10 | eqsstrri 3978 | . . . . 5 ⊢ ℝ+ ⊆ (0[,)+∞) |
| 12 | 4 | rpreccld 12948 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
| 13 | 11, 12 | sselid 3928 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ (0[,)+∞)) |
| 14 | 8, 13 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞)) |
| 15 | 1, 2, 14 | esummulc1 34117 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
| 16 | iccssxr 13334 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 17 | 2 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 18 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
| 19 | 18 | esumcl 34066 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 20 | 1, 17, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 21 | 16, 20 | sselid 3928 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
| 22 | xdivrec 32916 | . . 3 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) | |
| 23 | 21, 5, 6, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) |
| 24 | 16, 2 | sselid 3928 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 25 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 26 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
| 27 | xdivrec 32916 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) | |
| 28 | 24, 25, 26, 27 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) |
| 29 | 28 | esumeq2dv 34074 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
| 30 | 15, 23, 29 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 +∞cpnf 11152 ℝ*cxr 11154 / cdiv 11783 ℝ+crp 12894 ·e cxmu 13014 (,)cioo 13249 [,)cico 13251 [,]cicc 13252 /𝑒 cxdiv 32906 Σ*cesum 34063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-ioo 13253 df-ioc 13254 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-tset 17184 df-ple 17185 df-ds 17187 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-ordt 17409 df-xrs 17410 df-mre 17492 df-mrc 17493 df-acs 17495 df-ps 18476 df-tsr 18477 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-submnd 18696 df-cntz 19233 df-cmn 19698 df-fbas 21292 df-fg 21293 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-ntr 22938 df-nei 23016 df-cn 23145 df-cnp 23146 df-haus 23233 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-tsms 24045 df-xdiv 32907 df-esum 34064 |
| This theorem is referenced by: measdivcst 34260 measdivcstALTV 34261 |
| Copyright terms: Public domain | W3C validator |