Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumdivc Structured version   Visualization version   GIF version

Theorem esumdivc 34119
Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Hypotheses
Ref Expression
esumdivc.a (𝜑𝐴𝑉)
esumdivc.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumdivc.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
esumdivc (𝜑 → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = Σ*𝑘𝐴(𝐵 /𝑒 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem esumdivc
StepHypRef Expression
1 esumdivc.a . . 3 (𝜑𝐴𝑉)
2 esumdivc.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
3 1red 11122 . . . . 5 (𝜑 → 1 ∈ ℝ)
4 esumdivc.c . . . . . 6 (𝜑𝐶 ∈ ℝ+)
54rpred 12938 . . . . 5 (𝜑𝐶 ∈ ℝ)
64rpne0d 12943 . . . . 5 (𝜑𝐶 ≠ 0)
7 rexdiv 32915 . . . . 5 ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶))
83, 5, 6, 7syl3anc 1373 . . . 4 (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶))
9 ioorp 13329 . . . . . 6 (0(,)+∞) = ℝ+
10 ioossico 13342 . . . . . 6 (0(,)+∞) ⊆ (0[,)+∞)
119, 10eqsstrri 3978 . . . . 5 + ⊆ (0[,)+∞)
124rpreccld 12948 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℝ+)
1311, 12sselid 3928 . . . 4 (𝜑 → (1 / 𝐶) ∈ (0[,)+∞))
148, 13eqeltrd 2833 . . 3 (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞))
151, 2, 14esummulc1 34117 . 2 (𝜑 → (Σ*𝑘𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘𝐴(𝐵 ·e (1 /𝑒 𝐶)))
16 iccssxr 13334 . . . 4 (0[,]+∞) ⊆ ℝ*
172ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
18 nfcv 2895 . . . . . 6 𝑘𝐴
1918esumcl 34066 . . . . 5 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
201, 17, 19syl2anc 584 . . . 4 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
2116, 20sselid 3928 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ*)
22 xdivrec 32916 . . 3 ((Σ*𝑘𝐴𝐵 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘𝐴𝐵 ·e (1 /𝑒 𝐶)))
2321, 5, 6, 22syl3anc 1373 . 2 (𝜑 → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘𝐴𝐵 ·e (1 /𝑒 𝐶)))
2416, 2sselid 3928 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
255adantr 480 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
266adantr 480 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ≠ 0)
27 xdivrec 32916 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶)))
2824, 25, 26, 27syl3anc 1373 . . 3 ((𝜑𝑘𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶)))
2928esumeq2dv 34074 . 2 (𝜑 → Σ*𝑘𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘𝐴(𝐵 ·e (1 /𝑒 𝐶)))
3015, 23, 293eqtr4d 2778 1 (𝜑 → (Σ*𝑘𝐴𝐵 /𝑒 𝐶) = Σ*𝑘𝐴(𝐵 /𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  (class class class)co 7354  cr 11014  0cc0 11015  1c1 11016  +∞cpnf 11152  *cxr 11154   / cdiv 11783  +crp 12894   ·e cxmu 13014  (,)cioo 13249  [,)cico 13251  [,]cicc 13252   /𝑒 cxdiv 32906  Σ*cesum 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-tset 17184  df-ple 17185  df-ds 17187  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-ordt 17409  df-xrs 17410  df-mre 17492  df-mrc 17493  df-acs 17495  df-ps 18476  df-tsr 18477  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-cntz 19233  df-cmn 19698  df-fbas 21292  df-fg 21293  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-ntr 22938  df-nei 23016  df-cn 23145  df-cnp 23146  df-haus 23233  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-tsms 24045  df-xdiv 32907  df-esum 34064
This theorem is referenced by:  measdivcst  34260  measdivcstALTV  34261
  Copyright terms: Public domain W3C validator