| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumdivc | Structured version Visualization version GIF version | ||
| Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| Ref | Expression |
|---|---|
| esumdivc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumdivc.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumdivc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| esumdivc | ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumdivc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | esumdivc.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 3 | 1red 11175 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | esumdivc.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 5 | 4 | rpred 12995 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | 4 | rpne0d 13000 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 7 | rexdiv 32846 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶)) |
| 9 | ioorp 13386 | . . . . . 6 ⊢ (0(,)+∞) = ℝ+ | |
| 10 | ioossico 13399 | . . . . . 6 ⊢ (0(,)+∞) ⊆ (0[,)+∞) | |
| 11 | 9, 10 | eqsstrri 3994 | . . . . 5 ⊢ ℝ+ ⊆ (0[,)+∞) |
| 12 | 4 | rpreccld 13005 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
| 13 | 11, 12 | sselid 3944 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ (0[,)+∞)) |
| 14 | 8, 13 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞)) |
| 15 | 1, 2, 14 | esummulc1 34071 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
| 16 | iccssxr 13391 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 17 | 2 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 18 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
| 19 | 18 | esumcl 34020 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 20 | 1, 17, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 21 | 16, 20 | sselid 3944 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
| 22 | xdivrec 32847 | . . 3 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) | |
| 23 | 21, 5, 6, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) |
| 24 | 16, 2 | sselid 3944 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 25 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 26 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
| 27 | xdivrec 32847 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) | |
| 28 | 24, 25, 26, 27 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) |
| 29 | 28 | esumeq2dv 34028 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
| 30 | 15, 23, 29 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 +∞cpnf 11205 ℝ*cxr 11207 / cdiv 11835 ℝ+crp 12951 ·e cxmu 13071 (,)cioo 13306 [,)cico 13308 [,]cicc 13309 /𝑒 cxdiv 32837 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-tset 17239 df-ple 17240 df-ds 17242 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-ordt 17464 df-xrs 17465 df-mre 17547 df-mrc 17548 df-acs 17550 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-cntz 19249 df-cmn 19712 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-ntr 22907 df-nei 22985 df-cn 23114 df-cnp 23115 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tsms 24014 df-xdiv 32838 df-esum 34018 |
| This theorem is referenced by: measdivcst 34214 measdivcstALTV 34215 |
| Copyright terms: Public domain | W3C validator |