| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumdivc | Structured version Visualization version GIF version | ||
| Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| Ref | Expression |
|---|---|
| esumdivc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumdivc.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumdivc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| esumdivc | ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumdivc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | esumdivc.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 3 | 1red 11113 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 4 | esumdivc.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 5 | 4 | rpred 12934 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 6 | 4 | rpne0d 12939 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
| 7 | rexdiv 32904 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶)) |
| 9 | ioorp 13325 | . . . . . 6 ⊢ (0(,)+∞) = ℝ+ | |
| 10 | ioossico 13338 | . . . . . 6 ⊢ (0(,)+∞) ⊆ (0[,)+∞) | |
| 11 | 9, 10 | eqsstrri 3982 | . . . . 5 ⊢ ℝ+ ⊆ (0[,)+∞) |
| 12 | 4 | rpreccld 12944 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
| 13 | 11, 12 | sselid 3932 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ (0[,)+∞)) |
| 14 | 8, 13 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞)) |
| 15 | 1, 2, 14 | esummulc1 34092 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
| 16 | iccssxr 13330 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 17 | 2 | ralrimiva 3124 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
| 18 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
| 19 | 18 | esumcl 34041 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 20 | 1, 17, 19 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
| 21 | 16, 20 | sselid 3932 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
| 22 | xdivrec 32905 | . . 3 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) | |
| 23 | 21, 5, 6, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) |
| 24 | 16, 2 | sselid 3932 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 25 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 26 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
| 27 | xdivrec 32905 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) | |
| 28 | 24, 25, 26, 27 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) |
| 29 | 28 | esumeq2dv 34049 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
| 30 | 15, 23, 29 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 +∞cpnf 11143 ℝ*cxr 11145 / cdiv 11774 ℝ+crp 12890 ·e cxmu 13010 (,)cioo 13245 [,)cico 13247 [,]cicc 13248 /𝑒 cxdiv 32895 Σ*cesum 34038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-ordt 17405 df-xrs 17406 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-cntz 19230 df-cmn 19695 df-fbas 21289 df-fg 21290 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-ntr 22936 df-nei 23014 df-cn 23143 df-cnp 23144 df-haus 23231 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-tsms 24043 df-xdiv 32896 df-esum 34039 |
| This theorem is referenced by: measdivcst 34235 measdivcstALTV 34236 |
| Copyright terms: Public domain | W3C validator |