Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemmf Structured version   Visualization version   GIF version

Theorem eulerpartlemmf 34352
Description: Lemma for eulerpart 34359. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemmf (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑥,𝑦,𝑧   𝑓,𝑜,𝑟,𝐴   𝑜,𝐹   𝐻,𝑟   𝑓,𝐽   𝑛,𝑜,𝑟,𝐽,𝑥,𝑦   𝑜,𝑀   𝑓,𝑁   𝑔,𝑛,𝑃   𝑅,𝑜   𝑇,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemmf
StepHypRef Expression
1 bitsf1o 16465 . . . . 5 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
2 f1of 6828 . . . . 5 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin))
31, 2ax-mp 5 . . . 4 (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin)
4 eulerpart.p . . . . . . . . 9 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . . . . . 9 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . . . . . 9 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
7 eulerpart.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
8 eulerpart.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 eulerpart.h . . . . . . . . 9 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
10 eulerpart.m . . . . . . . . 9 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
11 eulerpart.r . . . . . . . . 9 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
12 eulerpart.t . . . . . . . . 9 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 34346 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1413biimpi 216 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1514simp1d 1142 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
16 nn0ex 12515 . . . . . . 7 0 ∈ V
17 nnex 12254 . . . . . . 7 ℕ ∈ V
1816, 17elmap 8893 . . . . . 6 (𝐴 ∈ (ℕ0m ℕ) ↔ 𝐴:ℕ⟶ℕ0)
1915, 18sylib 218 . . . . 5 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
20 ssrab2 4060 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
217, 20eqsstri 4010 . . . . 5 𝐽 ⊆ ℕ
22 fssres 6754 . . . . 5 ((𝐴:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝐴𝐽):𝐽⟶ℕ0)
2319, 21, 22sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽):𝐽⟶ℕ0)
24 fco2 6742 . . . 4 (((bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin) ∧ (𝐴𝐽):𝐽⟶ℕ0) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
253, 23, 24sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
2616pwex 5360 . . . . 5 𝒫 ℕ0 ∈ V
2726inex1 5297 . . . 4 (𝒫 ℕ0 ∩ Fin) ∈ V
2817, 21ssexi 5302 . . . 4 𝐽 ∈ V
2927, 28elmap 8893 . . 3 ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ↔ (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
3025, 29sylibr 234 . 2 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽))
3114simp2d 1143 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ∈ Fin)
32 0nn0 12524 . . . . . . . . 9 0 ∈ ℕ0
33 suppimacnv 8181 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ 0 ∈ ℕ0) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
3432, 33mpan2 691 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
35 fsuppeq 8182 . . . . . . . . . 10 ((ℕ ∈ V ∧ 0 ∈ ℕ0) → (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0}))))
3617, 32, 35mp2an 692 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3719, 36syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3834, 37eqtr3d 2771 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) = (𝐴 “ (ℕ0 ∖ {0})))
3938eleq1d 2818 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin))
40 dfn2 12522 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
4140imaeq2i 6056 . . . . . . 7 (𝐴 “ ℕ) = (𝐴 “ (ℕ0 ∖ {0}))
4241eleq1i 2824 . . . . . 6 ((𝐴 “ ℕ) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin)
4339, 42bitr4di 289 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
4431, 43mpbird 257 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) ∈ Fin)
45 resss 5999 . . . . 5 (𝐴𝐽) ⊆ 𝐴
46 cnvss 5863 . . . . 5 ((𝐴𝐽) ⊆ 𝐴(𝐴𝐽) ⊆ 𝐴)
47 imass1 6099 . . . . 5 ((𝐴𝐽) ⊆ 𝐴 → ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0})))
4845, 46, 47mp2b 10 . . . 4 ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))
49 ssfi 9195 . . . 4 (((𝐴 “ (V ∖ {0})) ∈ Fin ∧ ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
5044, 48, 49sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
51 cnvco 5876 . . . . . 6 (bits ∘ (𝐴𝐽)) = ((𝐴𝐽) ∘ bits)
5251imaeq1i 6055 . . . . 5 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = (((𝐴𝐽) ∘ bits) “ (V ∖ {∅}))
53 imaco 6251 . . . . 5 (((𝐴𝐽) ∘ bits) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
5452, 53eqtri 2757 . . . 4 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
55 ffun 6719 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
56 funres 6588 . . . . . 6 (Fun 𝐴 → Fun (𝐴𝐽))
5719, 55, 563syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → Fun (𝐴𝐽))
58 ssv 3988 . . . . . . 7 (bits “ V) ⊆ V
59 ssdif 4124 . . . . . . 7 ((bits “ V) ⊆ V → ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅})))
6058, 59ax-mp 5 . . . . . 6 ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅}))
61 bitsf 16447 . . . . . . 7 bits:ℤ⟶𝒫 ℕ0
62 ffun 6719 . . . . . . 7 (bits:ℤ⟶𝒫 ℕ0 → Fun bits)
63 difpreima 7065 . . . . . . 7 (Fun bits → (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅})))
6461, 62, 63mp2b 10 . . . . . 6 (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅}))
65 bitsf1 16466 . . . . . . . . 9 bits:ℤ–1-1→𝒫 ℕ0
66 0z 12607 . . . . . . . . . 10 0 ∈ ℤ
67 snssi 4788 . . . . . . . . . 10 (0 ∈ ℤ → {0} ⊆ ℤ)
6866, 67ax-mp 5 . . . . . . . . 9 {0} ⊆ ℤ
69 f1imacnv 6844 . . . . . . . . 9 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ {0} ⊆ ℤ) → (bits “ (bits “ {0})) = {0})
7065, 68, 69mp2an 692 . . . . . . . 8 (bits “ (bits “ {0})) = {0}
71 ffn 6716 . . . . . . . . . . . 12 (bits:ℤ⟶𝒫 ℕ0 → bits Fn ℤ)
7261, 71ax-mp 5 . . . . . . . . . . 11 bits Fn ℤ
73 fnsnfv 6968 . . . . . . . . . . 11 ((bits Fn ℤ ∧ 0 ∈ ℤ) → {(bits‘0)} = (bits “ {0}))
7472, 66, 73mp2an 692 . . . . . . . . . 10 {(bits‘0)} = (bits “ {0})
75 0bits 16459 . . . . . . . . . . 11 (bits‘0) = ∅
7675sneqi 4617 . . . . . . . . . 10 {(bits‘0)} = {∅}
7774, 76eqtr3i 2759 . . . . . . . . 9 (bits “ {0}) = {∅}
7877imaeq2i 6056 . . . . . . . 8 (bits “ (bits “ {0})) = (bits “ {∅})
7970, 78eqtr3i 2759 . . . . . . 7 {0} = (bits “ {∅})
8079difeq2i 4103 . . . . . 6 (V ∖ {0}) = (V ∖ (bits “ {∅}))
8160, 64, 803sstr4i 4015 . . . . 5 (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})
82 sspreima 7068 . . . . 5 ((Fun (𝐴𝐽) ∧ (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8357, 81, 82sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8454, 83eqsstrid 4002 . . 3 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
85 ssfi 9195 . . 3 ((((𝐴𝐽) “ (V ∖ {0})) ∈ Fin ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0}))) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
8650, 84, 85syl2anc 584 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
87 oveq1 7420 . . . . 5 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑟 supp ∅) = ((bits ∘ (𝐴𝐽)) supp ∅))
8887eleq1d 2818 . . . 4 (𝑟 = (bits ∘ (𝐴𝐽)) → ((𝑟 supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
8988, 9elrab2 3678 . . 3 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
90 zex 12605 . . . . . 6 ℤ ∈ V
91 fex 7228 . . . . . 6 ((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈ V) → bits ∈ V)
9261, 90, 91mp2an 692 . . . . 5 bits ∈ V
93 resexg 6025 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽) ∈ V)
94 coexg 7933 . . . . 5 ((bits ∈ V ∧ (𝐴𝐽) ∈ V) → (bits ∘ (𝐴𝐽)) ∈ V)
9592, 93, 94sylancr 587 . . . 4 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ V)
96 0ex 5287 . . . . . . 7 ∅ ∈ V
97 suppimacnv 8181 . . . . . . 7 (((bits ∘ (𝐴𝐽)) ∈ V ∧ ∅ ∈ V) → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9896, 97mpan2 691 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ V → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9998eleq1d 2818 . . . . 5 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin))
10099anbi2d 630 . . . 4 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10195, 100syl 17 . . 3 (𝐴 ∈ (𝑇𝑅) → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10289, 101bitrid 283 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10330, 86, 102mpbir2and 713 1 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {cab 2712  wral 3050  {crab 3419  Vcvv 3463  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5123  {copab 5185  cmpt 5205  ccnv 5664  cres 5667  cima 5668  ccom 5669  Fun wfun 6535   Fn wfn 6536  wf 6537  1-1wf1 6538  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  cmpo 7415   supp csupp 8167  m cmap 8848  Fincfn 8967  0cc0 11137  1c1 11138   · cmul 11142  cle 11278  cn 12248  2c2 12303  0cn0 12509  cz 12596  cexp 14084  Σcsu 15705  cdvds 16273  bitscbits 16439  𝟭cind 32780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-dvds 16274  df-bits 16442
This theorem is referenced by:  eulerpartlemgvv  34353  eulerpartlemgf  34356
  Copyright terms: Public domain W3C validator