Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemmf Structured version   Visualization version   GIF version

Theorem eulerpartlemmf 32342
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemmf (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑥,𝑦,𝑧   𝑓,𝑜,𝑟,𝐴   𝑜,𝐹   𝐻,𝑟   𝑓,𝐽   𝑛,𝑜,𝑟,𝐽,𝑥,𝑦   𝑜,𝑀   𝑓,𝑁   𝑔,𝑛,𝑃   𝑅,𝑜   𝑇,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemmf
StepHypRef Expression
1 bitsf1o 16152 . . . . 5 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
2 f1of 6716 . . . . 5 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin))
31, 2ax-mp 5 . . . 4 (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin)
4 eulerpart.p . . . . . . . . 9 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . . . . . 9 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . . . . . 9 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
7 eulerpart.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
8 eulerpart.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 eulerpart.h . . . . . . . . 9 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
10 eulerpart.m . . . . . . . . 9 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
11 eulerpart.r . . . . . . . . 9 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
12 eulerpart.t . . . . . . . . 9 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 32336 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1413biimpi 215 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1514simp1d 1141 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
16 nn0ex 12239 . . . . . . 7 0 ∈ V
17 nnex 11979 . . . . . . 7 ℕ ∈ V
1816, 17elmap 8659 . . . . . 6 (𝐴 ∈ (ℕ0m ℕ) ↔ 𝐴:ℕ⟶ℕ0)
1915, 18sylib 217 . . . . 5 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
20 ssrab2 4013 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
217, 20eqsstri 3955 . . . . 5 𝐽 ⊆ ℕ
22 fssres 6640 . . . . 5 ((𝐴:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝐴𝐽):𝐽⟶ℕ0)
2319, 21, 22sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽):𝐽⟶ℕ0)
24 fco2 6627 . . . 4 (((bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin) ∧ (𝐴𝐽):𝐽⟶ℕ0) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
253, 23, 24sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
2616pwex 5303 . . . . 5 𝒫 ℕ0 ∈ V
2726inex1 5241 . . . 4 (𝒫 ℕ0 ∩ Fin) ∈ V
2817, 21ssexi 5246 . . . 4 𝐽 ∈ V
2927, 28elmap 8659 . . 3 ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ↔ (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
3025, 29sylibr 233 . 2 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽))
3114simp2d 1142 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ∈ Fin)
32 0nn0 12248 . . . . . . . . 9 0 ∈ ℕ0
33 suppimacnv 7990 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ 0 ∈ ℕ0) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
3432, 33mpan2 688 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
35 frnsuppeq 7991 . . . . . . . . . 10 ((ℕ ∈ V ∧ 0 ∈ ℕ0) → (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0}))))
3617, 32, 35mp2an 689 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3719, 36syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3834, 37eqtr3d 2780 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) = (𝐴 “ (ℕ0 ∖ {0})))
3938eleq1d 2823 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin))
40 dfn2 12246 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
4140imaeq2i 5967 . . . . . . 7 (𝐴 “ ℕ) = (𝐴 “ (ℕ0 ∖ {0}))
4241eleq1i 2829 . . . . . 6 ((𝐴 “ ℕ) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin)
4339, 42bitr4di 289 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
4431, 43mpbird 256 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) ∈ Fin)
45 resss 5916 . . . . 5 (𝐴𝐽) ⊆ 𝐴
46 cnvss 5781 . . . . 5 ((𝐴𝐽) ⊆ 𝐴(𝐴𝐽) ⊆ 𝐴)
47 imass1 6009 . . . . 5 ((𝐴𝐽) ⊆ 𝐴 → ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0})))
4845, 46, 47mp2b 10 . . . 4 ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))
49 ssfi 8956 . . . 4 (((𝐴 “ (V ∖ {0})) ∈ Fin ∧ ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
5044, 48, 49sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
51 cnvco 5794 . . . . . 6 (bits ∘ (𝐴𝐽)) = ((𝐴𝐽) ∘ bits)
5251imaeq1i 5966 . . . . 5 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = (((𝐴𝐽) ∘ bits) “ (V ∖ {∅}))
53 imaco 6155 . . . . 5 (((𝐴𝐽) ∘ bits) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
5452, 53eqtri 2766 . . . 4 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
55 ffun 6603 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
56 funres 6476 . . . . . 6 (Fun 𝐴 → Fun (𝐴𝐽))
5719, 55, 563syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → Fun (𝐴𝐽))
58 ssv 3945 . . . . . . 7 (bits “ V) ⊆ V
59 ssdif 4074 . . . . . . 7 ((bits “ V) ⊆ V → ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅})))
6058, 59ax-mp 5 . . . . . 6 ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅}))
61 bitsf 16134 . . . . . . 7 bits:ℤ⟶𝒫 ℕ0
62 ffun 6603 . . . . . . 7 (bits:ℤ⟶𝒫 ℕ0 → Fun bits)
63 difpreima 6942 . . . . . . 7 (Fun bits → (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅})))
6461, 62, 63mp2b 10 . . . . . 6 (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅}))
65 bitsf1 16153 . . . . . . . . 9 bits:ℤ–1-1→𝒫 ℕ0
66 0z 12330 . . . . . . . . . 10 0 ∈ ℤ
67 snssi 4741 . . . . . . . . . 10 (0 ∈ ℤ → {0} ⊆ ℤ)
6866, 67ax-mp 5 . . . . . . . . 9 {0} ⊆ ℤ
69 f1imacnv 6732 . . . . . . . . 9 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ {0} ⊆ ℤ) → (bits “ (bits “ {0})) = {0})
7065, 68, 69mp2an 689 . . . . . . . 8 (bits “ (bits “ {0})) = {0}
71 ffn 6600 . . . . . . . . . . . 12 (bits:ℤ⟶𝒫 ℕ0 → bits Fn ℤ)
7261, 71ax-mp 5 . . . . . . . . . . 11 bits Fn ℤ
73 fnsnfv 6847 . . . . . . . . . . 11 ((bits Fn ℤ ∧ 0 ∈ ℤ) → {(bits‘0)} = (bits “ {0}))
7472, 66, 73mp2an 689 . . . . . . . . . 10 {(bits‘0)} = (bits “ {0})
75 0bits 16146 . . . . . . . . . . 11 (bits‘0) = ∅
7675sneqi 4572 . . . . . . . . . 10 {(bits‘0)} = {∅}
7774, 76eqtr3i 2768 . . . . . . . . 9 (bits “ {0}) = {∅}
7877imaeq2i 5967 . . . . . . . 8 (bits “ (bits “ {0})) = (bits “ {∅})
7970, 78eqtr3i 2768 . . . . . . 7 {0} = (bits “ {∅})
8079difeq2i 4054 . . . . . 6 (V ∖ {0}) = (V ∖ (bits “ {∅}))
8160, 64, 803sstr4i 3964 . . . . 5 (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})
82 sspreima 6945 . . . . 5 ((Fun (𝐴𝐽) ∧ (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8357, 81, 82sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8454, 83eqsstrid 3969 . . 3 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
85 ssfi 8956 . . 3 ((((𝐴𝐽) “ (V ∖ {0})) ∈ Fin ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0}))) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
8650, 84, 85syl2anc 584 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
87 oveq1 7282 . . . . 5 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑟 supp ∅) = ((bits ∘ (𝐴𝐽)) supp ∅))
8887eleq1d 2823 . . . 4 (𝑟 = (bits ∘ (𝐴𝐽)) → ((𝑟 supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
8988, 9elrab2 3627 . . 3 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
90 zex 12328 . . . . . 6 ℤ ∈ V
91 fex 7102 . . . . . 6 ((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈ V) → bits ∈ V)
9261, 90, 91mp2an 689 . . . . 5 bits ∈ V
93 resexg 5937 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽) ∈ V)
94 coexg 7776 . . . . 5 ((bits ∈ V ∧ (𝐴𝐽) ∈ V) → (bits ∘ (𝐴𝐽)) ∈ V)
9592, 93, 94sylancr 587 . . . 4 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ V)
96 0ex 5231 . . . . . . 7 ∅ ∈ V
97 suppimacnv 7990 . . . . . . 7 (((bits ∘ (𝐴𝐽)) ∈ V ∧ ∅ ∈ V) → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9896, 97mpan2 688 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ V → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9998eleq1d 2823 . . . . 5 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin))
10099anbi2d 629 . . . 4 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10195, 100syl 17 . . 3 (𝐴 ∈ (𝑇𝑅) → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10289, 101syl5bb 283 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10330, 86, 102mpbir2and 710 1 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  {copab 5136  cmpt 5157  ccnv 5588  cres 5591  cima 5592  ccom 5593  Fun wfun 6427   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277   supp csupp 7977  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cn 11973  2c2 12028  0cn0 12233  cz 12319  cexp 13782  Σcsu 15397  cdvds 15963  bitscbits 16126  𝟭cind 31978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-bits 16129
This theorem is referenced by:  eulerpartlemgvv  32343  eulerpartlemgf  32346
  Copyright terms: Public domain W3C validator