Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemmf Structured version   Visualization version   GIF version

Theorem eulerpartlemmf 34378
Description: Lemma for eulerpart 34385. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemmf (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑥,𝑦,𝑧   𝑓,𝑜,𝑟,𝐴   𝑜,𝐹   𝐻,𝑟   𝑓,𝐽   𝑛,𝑜,𝑟,𝐽,𝑥,𝑦   𝑜,𝑀   𝑓,𝑁   𝑔,𝑛,𝑃   𝑅,𝑜   𝑇,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemmf
StepHypRef Expression
1 bitsf1o 16348 . . . . 5 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
2 f1of 6759 . . . . 5 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin))
31, 2ax-mp 5 . . . 4 (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin)
4 eulerpart.p . . . . . . . . 9 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . . . . . 9 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . . . . . 9 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
7 eulerpart.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
8 eulerpart.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 eulerpart.h . . . . . . . . 9 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
10 eulerpart.m . . . . . . . . 9 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
11 eulerpart.r . . . . . . . . 9 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
12 eulerpart.t . . . . . . . . 9 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 34372 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1413biimpi 216 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1514simp1d 1142 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
16 nn0ex 12379 . . . . . . 7 0 ∈ V
17 nnex 12123 . . . . . . 7 ℕ ∈ V
1816, 17elmap 8790 . . . . . 6 (𝐴 ∈ (ℕ0m ℕ) ↔ 𝐴:ℕ⟶ℕ0)
1915, 18sylib 218 . . . . 5 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
20 ssrab2 4028 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
217, 20eqsstri 3979 . . . . 5 𝐽 ⊆ ℕ
22 fssres 6685 . . . . 5 ((𝐴:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝐴𝐽):𝐽⟶ℕ0)
2319, 21, 22sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽):𝐽⟶ℕ0)
24 fco2 6673 . . . 4 (((bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin) ∧ (𝐴𝐽):𝐽⟶ℕ0) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
253, 23, 24sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
2616pwex 5316 . . . . 5 𝒫 ℕ0 ∈ V
2726inex1 5253 . . . 4 (𝒫 ℕ0 ∩ Fin) ∈ V
2817, 21ssexi 5258 . . . 4 𝐽 ∈ V
2927, 28elmap 8790 . . 3 ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ↔ (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
3025, 29sylibr 234 . 2 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽))
3114simp2d 1143 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ∈ Fin)
32 0nn0 12388 . . . . . . . . 9 0 ∈ ℕ0
33 suppimacnv 8099 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ 0 ∈ ℕ0) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
3432, 33mpan2 691 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
35 fsuppeq 8100 . . . . . . . . . 10 ((ℕ ∈ V ∧ 0 ∈ ℕ0) → (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0}))))
3617, 32, 35mp2an 692 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3719, 36syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3834, 37eqtr3d 2767 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) = (𝐴 “ (ℕ0 ∖ {0})))
3938eleq1d 2814 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin))
40 dfn2 12386 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
4140imaeq2i 6004 . . . . . . 7 (𝐴 “ ℕ) = (𝐴 “ (ℕ0 ∖ {0}))
4241eleq1i 2820 . . . . . 6 ((𝐴 “ ℕ) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin)
4339, 42bitr4di 289 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
4431, 43mpbird 257 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) ∈ Fin)
45 resss 5947 . . . . 5 (𝐴𝐽) ⊆ 𝐴
46 cnvss 5810 . . . . 5 ((𝐴𝐽) ⊆ 𝐴(𝐴𝐽) ⊆ 𝐴)
47 imass1 6047 . . . . 5 ((𝐴𝐽) ⊆ 𝐴 → ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0})))
4845, 46, 47mp2b 10 . . . 4 ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))
49 ssfi 9077 . . . 4 (((𝐴 “ (V ∖ {0})) ∈ Fin ∧ ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
5044, 48, 49sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
51 cnvco 5823 . . . . . 6 (bits ∘ (𝐴𝐽)) = ((𝐴𝐽) ∘ bits)
5251imaeq1i 6003 . . . . 5 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = (((𝐴𝐽) ∘ bits) “ (V ∖ {∅}))
53 imaco 6195 . . . . 5 (((𝐴𝐽) ∘ bits) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
5452, 53eqtri 2753 . . . 4 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
55 ffun 6650 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
56 funres 6519 . . . . . 6 (Fun 𝐴 → Fun (𝐴𝐽))
5719, 55, 563syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → Fun (𝐴𝐽))
58 ssv 3957 . . . . . . 7 (bits “ V) ⊆ V
59 ssdif 4092 . . . . . . 7 ((bits “ V) ⊆ V → ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅})))
6058, 59ax-mp 5 . . . . . 6 ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅}))
61 bitsf 16330 . . . . . . 7 bits:ℤ⟶𝒫 ℕ0
62 ffun 6650 . . . . . . 7 (bits:ℤ⟶𝒫 ℕ0 → Fun bits)
63 difpreima 6993 . . . . . . 7 (Fun bits → (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅})))
6461, 62, 63mp2b 10 . . . . . 6 (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅}))
65 bitsf1 16349 . . . . . . . . 9 bits:ℤ–1-1→𝒫 ℕ0
66 0z 12471 . . . . . . . . . 10 0 ∈ ℤ
67 snssi 4758 . . . . . . . . . 10 (0 ∈ ℤ → {0} ⊆ ℤ)
6866, 67ax-mp 5 . . . . . . . . 9 {0} ⊆ ℤ
69 f1imacnv 6775 . . . . . . . . 9 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ {0} ⊆ ℤ) → (bits “ (bits “ {0})) = {0})
7065, 68, 69mp2an 692 . . . . . . . 8 (bits “ (bits “ {0})) = {0}
71 ffn 6647 . . . . . . . . . . . 12 (bits:ℤ⟶𝒫 ℕ0 → bits Fn ℤ)
7261, 71ax-mp 5 . . . . . . . . . . 11 bits Fn ℤ
73 fnsnfv 6896 . . . . . . . . . . 11 ((bits Fn ℤ ∧ 0 ∈ ℤ) → {(bits‘0)} = (bits “ {0}))
7472, 66, 73mp2an 692 . . . . . . . . . 10 {(bits‘0)} = (bits “ {0})
75 0bits 16342 . . . . . . . . . . 11 (bits‘0) = ∅
7675sneqi 4585 . . . . . . . . . 10 {(bits‘0)} = {∅}
7774, 76eqtr3i 2755 . . . . . . . . 9 (bits “ {0}) = {∅}
7877imaeq2i 6004 . . . . . . . 8 (bits “ (bits “ {0})) = (bits “ {∅})
7970, 78eqtr3i 2755 . . . . . . 7 {0} = (bits “ {∅})
8079difeq2i 4071 . . . . . 6 (V ∖ {0}) = (V ∖ (bits “ {∅}))
8160, 64, 803sstr4i 3984 . . . . 5 (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})
82 sspreima 6996 . . . . 5 ((Fun (𝐴𝐽) ∧ (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8357, 81, 82sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8454, 83eqsstrid 3971 . . 3 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
85 ssfi 9077 . . 3 ((((𝐴𝐽) “ (V ∖ {0})) ∈ Fin ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0}))) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
8650, 84, 85syl2anc 584 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
87 oveq1 7348 . . . . 5 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑟 supp ∅) = ((bits ∘ (𝐴𝐽)) supp ∅))
8887eleq1d 2814 . . . 4 (𝑟 = (bits ∘ (𝐴𝐽)) → ((𝑟 supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
8988, 9elrab2 3648 . . 3 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
90 zex 12469 . . . . . 6 ℤ ∈ V
91 fex 7155 . . . . . 6 ((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈ V) → bits ∈ V)
9261, 90, 91mp2an 692 . . . . 5 bits ∈ V
93 resexg 5973 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽) ∈ V)
94 coexg 7854 . . . . 5 ((bits ∈ V ∧ (𝐴𝐽) ∈ V) → (bits ∘ (𝐴𝐽)) ∈ V)
9592, 93, 94sylancr 587 . . . 4 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ V)
96 0ex 5243 . . . . . . 7 ∅ ∈ V
97 suppimacnv 8099 . . . . . . 7 (((bits ∘ (𝐴𝐽)) ∈ V ∧ ∅ ∈ V) → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9896, 97mpan2 691 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ V → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9998eleq1d 2814 . . . . 5 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin))
10099anbi2d 630 . . . 4 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10195, 100syl 17 . . 3 (𝐴 ∈ (𝑇𝑅) → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10289, 101bitrid 283 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10330, 86, 102mpbir2and 713 1 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  {cab 2708  wral 3045  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  {copab 5151  cmpt 5170  ccnv 5613  cres 5616  cima 5617  ccom 5618  Fun wfun 6471   Fn wfn 6472  wf 6473  1-1wf1 6474  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cmpo 7343   supp csupp 8085  m cmap 8745  Fincfn 8864  0cc0 10998  1c1 10999   · cmul 11003  cle 11139  cn 12117  2c2 12172  0cn0 12373  cz 12460  cexp 13960  Σcsu 15585  cdvds 16155  bitscbits 16322  𝟭cind 32821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-dvds 16156  df-bits 16325
This theorem is referenced by:  eulerpartlemgvv  34379  eulerpartlemgf  34382
  Copyright terms: Public domain W3C validator