Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemf Structured version   Visualization version   GIF version

Theorem eulerpartlemf 34121
Description: Lemma for eulerpart 34133: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemf ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
Distinct variable groups:   𝑧,𝑡   𝑓,𝑔,𝑘,𝑛,𝑡,𝐴   𝑓,𝐽   𝑓,𝑁   𝑃,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑡,𝑓,𝑘,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemf
StepHypRef Expression
1 eldif 3954 . . . . . 6 (𝑡 ∈ (ℕ ∖ 𝐽) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽))
2 breq2 5153 . . . . . . . . . . 11 (𝑧 = 𝑡 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑡))
32notbid 317 . . . . . . . . . 10 (𝑧 = 𝑡 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑡))
4 eulerpart.j . . . . . . . . . 10 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
53, 4elrab2 3682 . . . . . . . . 9 (𝑡𝐽 ↔ (𝑡 ∈ ℕ ∧ ¬ 2 ∥ 𝑡))
65simplbi2 499 . . . . . . . 8 (𝑡 ∈ ℕ → (¬ 2 ∥ 𝑡𝑡𝐽))
76con1d 145 . . . . . . 7 (𝑡 ∈ ℕ → (¬ 𝑡𝐽 → 2 ∥ 𝑡))
87imp 405 . . . . . 6 ((𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽) → 2 ∥ 𝑡)
91, 8sylbi 216 . . . . 5 (𝑡 ∈ (ℕ ∖ 𝐽) → 2 ∥ 𝑡)
109adantl 480 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 2 ∥ 𝑡)
1110adantr 479 . . 3 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 2 ∥ 𝑡)
12 simpll 765 . . . 4 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 𝐴 ∈ (𝑇𝑅))
13 eldifi 4123 . . . . . 6 (𝑡 ∈ (ℕ ∖ 𝐽) → 𝑡 ∈ ℕ)
14 eulerpart.p . . . . . . . . . . 11 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
15 eulerpart.o . . . . . . . . . . 11 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
16 eulerpart.d . . . . . . . . . . 11 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
17 eulerpart.f . . . . . . . . . . 11 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
18 eulerpart.h . . . . . . . . . . 11 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
19 eulerpart.m . . . . . . . . . . 11 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
20 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
21 eulerpart.t . . . . . . . . . . 11 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
2214, 15, 16, 4, 17, 18, 19, 20, 21eulerpartlemt0 34120 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
2322simp1bi 1142 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
24 elmapi 8868 . . . . . . . . 9 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
2523, 24syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
26 ffn 6723 . . . . . . . 8 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
27 elpreima 7066 . . . . . . . 8 (𝐴 Fn ℕ → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
2825, 26, 273syl 18 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
2928baibd 538 . . . . . 6 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝐴𝑡) ∈ ℕ))
3013, 29sylan2 591 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝐴𝑡) ∈ ℕ))
3130biimpar 476 . . . 4 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 𝑡 ∈ (𝐴 “ ℕ))
3222simp3bi 1144 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ⊆ 𝐽)
3332sselda 3976 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (𝐴 “ ℕ)) → 𝑡𝐽)
345simprbi 495 . . . . 5 (𝑡𝐽 → ¬ 2 ∥ 𝑡)
3533, 34syl 17 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ 2 ∥ 𝑡)
3612, 31, 35syl2anc 582 . . 3 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → ¬ 2 ∥ 𝑡)
3711, 36pm2.65da 815 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ¬ (𝐴𝑡) ∈ ℕ)
3825adantr 479 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝐴:ℕ⟶ℕ0)
3913adantl 480 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝑡 ∈ ℕ)
4038, 39ffvelcdmd 7094 . . 3 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) ∈ ℕ0)
41 elnn0 12507 . . 3 ((𝐴𝑡) ∈ ℕ0 ↔ ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
4240, 41sylib 217 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
43 orel1 886 . 2 (¬ (𝐴𝑡) ∈ ℕ → (((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0) → (𝐴𝑡) = 0))
4437, 42, 43sylc 65 1 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  {cab 2702  wral 3050  {crab 3418  cdif 3941  cin 3943  wss 3944  c0 4322  𝒫 cpw 4604   class class class wbr 5149  {copab 5211  cmpt 5232  ccnv 5677  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  cmpo 7421   supp csupp 8165  m cmap 8845  Fincfn 8964  0cc0 11140  1c1 11141   · cmul 11145  cle 11281  cn 12245  2c2 12300  0cn0 12505  cexp 14062  Σcsu 15668  cdvds 16234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-mulcl 11202  ax-i2m1 11208
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-1st 7994  df-2nd 7995  df-map 8847  df-n0 12506
This theorem is referenced by:  eulerpartlemgh  34129
  Copyright terms: Public domain W3C validator