Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemf Structured version   Visualization version   GIF version

Theorem eulerpartlemf 34361
Description: Lemma for eulerpart 34373: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemf ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
Distinct variable groups:   𝑧,𝑡   𝑓,𝑔,𝑘,𝑛,𝑡,𝐴   𝑓,𝐽   𝑓,𝑁   𝑃,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑡,𝑓,𝑘,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemf
StepHypRef Expression
1 eldif 3924 . . . . . 6 (𝑡 ∈ (ℕ ∖ 𝐽) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽))
2 breq2 5111 . . . . . . . . . . 11 (𝑧 = 𝑡 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑡))
32notbid 318 . . . . . . . . . 10 (𝑧 = 𝑡 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑡))
4 eulerpart.j . . . . . . . . . 10 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
53, 4elrab2 3662 . . . . . . . . 9 (𝑡𝐽 ↔ (𝑡 ∈ ℕ ∧ ¬ 2 ∥ 𝑡))
65simplbi2 500 . . . . . . . 8 (𝑡 ∈ ℕ → (¬ 2 ∥ 𝑡𝑡𝐽))
76con1d 145 . . . . . . 7 (𝑡 ∈ ℕ → (¬ 𝑡𝐽 → 2 ∥ 𝑡))
87imp 406 . . . . . 6 ((𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽) → 2 ∥ 𝑡)
91, 8sylbi 217 . . . . 5 (𝑡 ∈ (ℕ ∖ 𝐽) → 2 ∥ 𝑡)
109adantl 481 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 2 ∥ 𝑡)
1110adantr 480 . . 3 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 2 ∥ 𝑡)
12 simpll 766 . . . 4 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 𝐴 ∈ (𝑇𝑅))
13 eldifi 4094 . . . . . 6 (𝑡 ∈ (ℕ ∖ 𝐽) → 𝑡 ∈ ℕ)
14 eulerpart.p . . . . . . . . . . 11 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
15 eulerpart.o . . . . . . . . . . 11 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
16 eulerpart.d . . . . . . . . . . 11 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
17 eulerpart.f . . . . . . . . . . 11 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
18 eulerpart.h . . . . . . . . . . 11 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
19 eulerpart.m . . . . . . . . . . 11 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
20 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
21 eulerpart.t . . . . . . . . . . 11 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
2214, 15, 16, 4, 17, 18, 19, 20, 21eulerpartlemt0 34360 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
2322simp1bi 1145 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
24 elmapi 8822 . . . . . . . . 9 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
2523, 24syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
26 ffn 6688 . . . . . . . 8 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
27 elpreima 7030 . . . . . . . 8 (𝐴 Fn ℕ → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
2825, 26, 273syl 18 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
2928baibd 539 . . . . . 6 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝐴𝑡) ∈ ℕ))
3013, 29sylan2 593 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝐴𝑡) ∈ ℕ))
3130biimpar 477 . . . 4 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 𝑡 ∈ (𝐴 “ ℕ))
3222simp3bi 1147 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ⊆ 𝐽)
3332sselda 3946 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (𝐴 “ ℕ)) → 𝑡𝐽)
345simprbi 496 . . . . 5 (𝑡𝐽 → ¬ 2 ∥ 𝑡)
3533, 34syl 17 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ 2 ∥ 𝑡)
3612, 31, 35syl2anc 584 . . 3 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → ¬ 2 ∥ 𝑡)
3711, 36pm2.65da 816 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ¬ (𝐴𝑡) ∈ ℕ)
3825adantr 480 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝐴:ℕ⟶ℕ0)
3913adantl 481 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝑡 ∈ ℕ)
4038, 39ffvelcdmd 7057 . . 3 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) ∈ ℕ0)
41 elnn0 12444 . . 3 ((𝐴𝑡) ∈ ℕ0 ↔ ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
4240, 41sylib 218 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
43 orel1 888 . 2 (¬ (𝐴𝑡) ∈ ℕ → (((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0) → (𝐴𝑡) = 0))
4437, 42, 43sylc 65 1 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3405  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   class class class wbr 5107  {copab 5169  cmpt 5188  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389   supp csupp 8139  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   · cmul 11073  cle 11209  cn 12186  2c2 12241  0cn0 12442  cexp 14026  Σcsu 15652  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-n0 12443
This theorem is referenced by:  eulerpartlemgh  34369
  Copyright terms: Public domain W3C validator