Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemf Structured version   Visualization version   GIF version

Theorem eulerpartlemf 32337
Description: Lemma for eulerpart 32349: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
Assertion
Ref Expression
eulerpartlemf ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
Distinct variable groups:   𝑧,𝑡   𝑓,𝑔,𝑘,𝑛,𝑡,𝐴   𝑓,𝐽   𝑓,𝑁   𝑃,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑡,𝑓,𝑘,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemf
StepHypRef Expression
1 eldif 3897 . . . . . 6 (𝑡 ∈ (ℕ ∖ 𝐽) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽))
2 breq2 5078 . . . . . . . . . . 11 (𝑧 = 𝑡 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑡))
32notbid 318 . . . . . . . . . 10 (𝑧 = 𝑡 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑡))
4 eulerpart.j . . . . . . . . . 10 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
53, 4elrab2 3627 . . . . . . . . 9 (𝑡𝐽 ↔ (𝑡 ∈ ℕ ∧ ¬ 2 ∥ 𝑡))
65simplbi2 501 . . . . . . . 8 (𝑡 ∈ ℕ → (¬ 2 ∥ 𝑡𝑡𝐽))
76con1d 145 . . . . . . 7 (𝑡 ∈ ℕ → (¬ 𝑡𝐽 → 2 ∥ 𝑡))
87imp 407 . . . . . 6 ((𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽) → 2 ∥ 𝑡)
91, 8sylbi 216 . . . . 5 (𝑡 ∈ (ℕ ∖ 𝐽) → 2 ∥ 𝑡)
109adantl 482 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 2 ∥ 𝑡)
1110adantr 481 . . 3 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 2 ∥ 𝑡)
12 simpll 764 . . . 4 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 𝐴 ∈ (𝑇𝑅))
13 eldifi 4061 . . . . . 6 (𝑡 ∈ (ℕ ∖ 𝐽) → 𝑡 ∈ ℕ)
14 eulerpart.p . . . . . . . . . . 11 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
15 eulerpart.o . . . . . . . . . . 11 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
16 eulerpart.d . . . . . . . . . . 11 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
17 eulerpart.f . . . . . . . . . . 11 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
18 eulerpart.h . . . . . . . . . . 11 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
19 eulerpart.m . . . . . . . . . . 11 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
20 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
21 eulerpart.t . . . . . . . . . . 11 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
2214, 15, 16, 4, 17, 18, 19, 20, 21eulerpartlemt0 32336 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
2322simp1bi 1144 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
24 elmapi 8637 . . . . . . . . 9 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
2523, 24syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
26 ffn 6600 . . . . . . . 8 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
27 elpreima 6935 . . . . . . . 8 (𝐴 Fn ℕ → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
2825, 26, 273syl 18 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
2928baibd 540 . . . . . 6 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝐴𝑡) ∈ ℕ))
3013, 29sylan2 593 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝐴𝑡) ∈ ℕ))
3130biimpar 478 . . . 4 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → 𝑡 ∈ (𝐴 “ ℕ))
3222simp3bi 1146 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ⊆ 𝐽)
3332sselda 3921 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (𝐴 “ ℕ)) → 𝑡𝐽)
345simprbi 497 . . . . 5 (𝑡𝐽 → ¬ 2 ∥ 𝑡)
3533, 34syl 17 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ 2 ∥ 𝑡)
3612, 31, 35syl2anc 584 . . 3 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴𝑡) ∈ ℕ) → ¬ 2 ∥ 𝑡)
3711, 36pm2.65da 814 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ¬ (𝐴𝑡) ∈ ℕ)
3825adantr 481 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝐴:ℕ⟶ℕ0)
3913adantl 482 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝑡 ∈ ℕ)
4038, 39ffvelrnd 6962 . . 3 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) ∈ ℕ0)
41 elnn0 12235 . . 3 ((𝐴𝑡) ∈ ℕ0 ↔ ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
4240, 41sylib 217 . 2 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
43 orel1 886 . 2 (¬ (𝐴𝑡) ∈ ℕ → (((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0) → (𝐴𝑡) = 0))
4437, 42, 43sylc 65 1 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  {cab 2715  wral 3064  {crab 3068  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   class class class wbr 5074  {copab 5136  cmpt 5157  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277   supp csupp 7977  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cn 11973  2c2 12028  0cn0 12233  cexp 13782  Σcsu 15397  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-n0 12234
This theorem is referenced by:  eulerpartlemgh  32345
  Copyright terms: Public domain W3C validator