Proof of Theorem eulerpartlemf
Step | Hyp | Ref
| Expression |
1 | | eldif 3893 |
. . . . . 6
⊢ (𝑡 ∈ (ℕ ∖ 𝐽) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ 𝐽)) |
2 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑡 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑡)) |
3 | 2 | notbid 317 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑡 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑡)) |
4 | | eulerpart.j |
. . . . . . . . . 10
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
5 | 3, 4 | elrab2 3620 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝐽 ↔ (𝑡 ∈ ℕ ∧ ¬ 2 ∥ 𝑡)) |
6 | 5 | simplbi2 500 |
. . . . . . . 8
⊢ (𝑡 ∈ ℕ → (¬ 2
∥ 𝑡 → 𝑡 ∈ 𝐽)) |
7 | 6 | con1d 145 |
. . . . . . 7
⊢ (𝑡 ∈ ℕ → (¬
𝑡 ∈ 𝐽 → 2 ∥ 𝑡)) |
8 | 7 | imp 406 |
. . . . . 6
⊢ ((𝑡 ∈ ℕ ∧ ¬
𝑡 ∈ 𝐽) → 2 ∥ 𝑡) |
9 | 1, 8 | sylbi 216 |
. . . . 5
⊢ (𝑡 ∈ (ℕ ∖ 𝐽) → 2 ∥ 𝑡) |
10 | 9 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 2 ∥ 𝑡) |
11 | 10 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴‘𝑡) ∈ ℕ) → 2 ∥ 𝑡) |
12 | | simpll 763 |
. . . 4
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴‘𝑡) ∈ ℕ) → 𝐴 ∈ (𝑇 ∩ 𝑅)) |
13 | | eldifi 4057 |
. . . . . 6
⊢ (𝑡 ∈ (ℕ ∖ 𝐽) → 𝑡 ∈ ℕ) |
14 | | eulerpart.p |
. . . . . . . . . . 11
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
15 | | eulerpart.o |
. . . . . . . . . . 11
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
16 | | eulerpart.d |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
17 | | eulerpart.f |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
18 | | eulerpart.h |
. . . . . . . . . . 11
⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m 𝐽)
∣ (𝑟 supp ∅)
∈ Fin} |
19 | | eulerpart.m |
. . . . . . . . . . 11
⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
20 | | eulerpart.r |
. . . . . . . . . . 11
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
21 | | eulerpart.t |
. . . . . . . . . . 11
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
22 | 14, 15, 16, 4, 17, 18, 19, 20, 21 | eulerpartlemt0 32236 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0
↑m ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
23 | 22 | simp1bi 1143 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴 ∈ (ℕ0
↑m ℕ)) |
24 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝐴 ∈ (ℕ0
↑m ℕ) → 𝐴:ℕ⟶ℕ0) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
26 | | ffn 6584 |
. . . . . . . 8
⊢ (𝐴:ℕ⟶ℕ0 →
𝐴 Fn
ℕ) |
27 | | elpreima 6917 |
. . . . . . . 8
⊢ (𝐴 Fn ℕ → (𝑡 ∈ (◡𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴‘𝑡) ∈ ℕ))) |
28 | 25, 26, 27 | 3syl 18 |
. . . . . . 7
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (𝑡 ∈ (◡𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴‘𝑡) ∈ ℕ))) |
29 | 28 | baibd 539 |
. . . . . 6
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (◡𝐴 “ ℕ) ↔ (𝐴‘𝑡) ∈ ℕ)) |
30 | 13, 29 | sylan2 592 |
. . . . 5
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝑡 ∈ (◡𝐴 “ ℕ) ↔ (𝐴‘𝑡) ∈ ℕ)) |
31 | 30 | biimpar 477 |
. . . 4
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴‘𝑡) ∈ ℕ) → 𝑡 ∈ (◡𝐴 “ ℕ)) |
32 | 22 | simp3bi 1145 |
. . . . . 6
⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) → (◡𝐴 “ ℕ) ⊆ 𝐽) |
33 | 32 | sselda 3917 |
. . . . 5
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (◡𝐴 “ ℕ)) → 𝑡 ∈ 𝐽) |
34 | 5 | simprbi 496 |
. . . . 5
⊢ (𝑡 ∈ 𝐽 → ¬ 2 ∥ 𝑡) |
35 | 33, 34 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (◡𝐴 “ ℕ)) → ¬ 2 ∥
𝑡) |
36 | 12, 31, 35 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) ∧ (𝐴‘𝑡) ∈ ℕ) → ¬ 2 ∥
𝑡) |
37 | 11, 36 | pm2.65da 813 |
. 2
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ¬ (𝐴‘𝑡) ∈ ℕ) |
38 | 25 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝐴:ℕ⟶ℕ0) |
39 | 13 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → 𝑡 ∈ ℕ) |
40 | 38, 39 | ffvelrnd 6944 |
. . 3
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴‘𝑡) ∈
ℕ0) |
41 | | elnn0 12165 |
. . 3
⊢ ((𝐴‘𝑡) ∈ ℕ0 ↔ ((𝐴‘𝑡) ∈ ℕ ∨ (𝐴‘𝑡) = 0)) |
42 | 40, 41 | sylib 217 |
. 2
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → ((𝐴‘𝑡) ∈ ℕ ∨ (𝐴‘𝑡) = 0)) |
43 | | orel1 885 |
. 2
⊢ (¬
(𝐴‘𝑡) ∈ ℕ → (((𝐴‘𝑡) ∈ ℕ ∨ (𝐴‘𝑡) = 0) → (𝐴‘𝑡) = 0)) |
44 | 37, 42, 43 | sylc 65 |
1
⊢ ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴‘𝑡) = 0) |