Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgu Structured version   Visualization version   GIF version

Theorem eulerpartlemgu 33364
Description: Lemma for eulerpart 33369: Rewriting the π‘ˆ set for an odd partition Note that interestingly, this proof reuses marypha2lem2 9427. (Contributed by Thierry Arnoux, 10-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (β„•0 ↑m β„•) ∣ ((◑𝑓 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = 𝑁)}
eulerpart.o 𝑂 = {𝑔 ∈ 𝑃 ∣ βˆ€π‘› ∈ (◑𝑔 β€œ β„•) Β¬ 2 βˆ₯ 𝑛}
eulerpart.d 𝐷 = {𝑔 ∈ 𝑃 ∣ βˆ€π‘› ∈ β„• (π‘”β€˜π‘›) ≀ 1}
eulerpart.j 𝐽 = {𝑧 ∈ β„• ∣ Β¬ 2 βˆ₯ 𝑧}
eulerpart.f 𝐹 = (π‘₯ ∈ 𝐽, 𝑦 ∈ β„•0 ↦ ((2↑𝑦) Β· π‘₯))
eulerpart.h 𝐻 = {π‘Ÿ ∈ ((𝒫 β„•0 ∩ Fin) ↑m 𝐽) ∣ (π‘Ÿ supp βˆ…) ∈ Fin}
eulerpart.m 𝑀 = (π‘Ÿ ∈ 𝐻 ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ (π‘Ÿβ€˜π‘₯))})
eulerpart.r 𝑅 = {𝑓 ∣ (◑𝑓 β€œ β„•) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (β„•0 ↑m β„•) ∣ (◑𝑓 β€œ β„•) βŠ† 𝐽}
eulerpart.g 𝐺 = (π‘œ ∈ (𝑇 ∩ 𝑅) ↦ ((πŸ­β€˜β„•)β€˜(𝐹 β€œ (π‘€β€˜(bits ∘ (π‘œ β†Ύ 𝐽))))))
eulerpartlemgh.1 π‘ˆ = βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— (bitsβ€˜(π΄β€˜π‘‘)))
Assertion
Ref Expression
eulerpartlemgu (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ π‘ˆ = {βŸ¨π‘‘, π‘›βŸ© ∣ (𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)β€˜π‘‘))})
Distinct variable groups:   𝑧,𝑑   𝑓,𝑔,π‘˜,𝑛,𝑑,𝐴   𝑓,𝐽,𝑛,𝑑   𝑓,𝑁,π‘˜,𝑛,𝑑   𝑛,𝑂,𝑑   𝑃,𝑔,π‘˜   𝑅,𝑓,π‘˜,𝑛,𝑑   𝑇,𝑛,𝑑
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑧,π‘œ,π‘Ÿ)   𝐷(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑔,π‘˜,𝑛,π‘œ,π‘Ÿ)   𝑃(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑛,π‘œ,π‘Ÿ)   𝑅(π‘₯,𝑦,𝑧,𝑔,π‘œ,π‘Ÿ)   𝑇(π‘₯,𝑦,𝑧,𝑓,𝑔,π‘˜,π‘œ,π‘Ÿ)   π‘ˆ(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑔,π‘˜,𝑛,π‘œ,π‘Ÿ)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑔,π‘˜,𝑛,π‘œ,π‘Ÿ)   𝐺(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑔,π‘˜,𝑛,π‘œ,π‘Ÿ)   𝐻(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑔,π‘˜,𝑛,π‘œ,π‘Ÿ)   𝐽(π‘₯,𝑦,𝑧,𝑔,π‘˜,π‘œ,π‘Ÿ)   𝑀(π‘₯,𝑦,𝑧,𝑑,𝑓,𝑔,π‘˜,𝑛,π‘œ,π‘Ÿ)   𝑁(π‘₯,𝑦,𝑧,𝑔,π‘œ,π‘Ÿ)   𝑂(π‘₯,𝑦,𝑧,𝑓,𝑔,π‘˜,π‘œ,π‘Ÿ)

Proof of Theorem eulerpartlemgu
StepHypRef Expression
1 eulerpartlemgh.1 . 2 π‘ˆ = βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— (bitsβ€˜(π΄β€˜π‘‘)))
2 eulerpart.p . . . . . . . . . . 11 𝑃 = {𝑓 ∈ (β„•0 ↑m β„•) ∣ ((◑𝑓 β€œ β„•) ∈ Fin ∧ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜) = 𝑁)}
3 eulerpart.o . . . . . . . . . . 11 𝑂 = {𝑔 ∈ 𝑃 ∣ βˆ€π‘› ∈ (◑𝑔 β€œ β„•) Β¬ 2 βˆ₯ 𝑛}
4 eulerpart.d . . . . . . . . . . 11 𝐷 = {𝑔 ∈ 𝑃 ∣ βˆ€π‘› ∈ β„• (π‘”β€˜π‘›) ≀ 1}
5 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ β„• ∣ Β¬ 2 βˆ₯ 𝑧}
6 eulerpart.f . . . . . . . . . . 11 𝐹 = (π‘₯ ∈ 𝐽, 𝑦 ∈ β„•0 ↦ ((2↑𝑦) Β· π‘₯))
7 eulerpart.h . . . . . . . . . . 11 𝐻 = {π‘Ÿ ∈ ((𝒫 β„•0 ∩ Fin) ↑m 𝐽) ∣ (π‘Ÿ supp βˆ…) ∈ Fin}
8 eulerpart.m . . . . . . . . . . 11 𝑀 = (π‘Ÿ ∈ 𝐻 ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐽 ∧ 𝑦 ∈ (π‘Ÿβ€˜π‘₯))})
9 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (◑𝑓 β€œ β„•) ∈ Fin}
10 eulerpart.t . . . . . . . . . . 11 𝑇 = {𝑓 ∈ (β„•0 ↑m β„•) ∣ (◑𝑓 β€œ β„•) βŠ† 𝐽}
112, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemt0 33356 . . . . . . . . . 10 (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (β„•0 ↑m β„•) ∧ (◑𝐴 β€œ β„•) ∈ Fin ∧ (◑𝐴 β€œ β„•) βŠ† 𝐽))
1211simp1bi 1145 . . . . . . . . 9 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ 𝐴 ∈ (β„•0 ↑m β„•))
13 elmapi 8839 . . . . . . . . 9 (𝐴 ∈ (β„•0 ↑m β„•) β†’ 𝐴:β„•βŸΆβ„•0)
1412, 13syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ 𝐴:β„•βŸΆβ„•0)
1514adantr 481 . . . . . . 7 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ 𝐴:β„•βŸΆβ„•0)
1615ffund 6718 . . . . . 6 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ Fun 𝐴)
17 inss1 4227 . . . . . . . . 9 ((◑𝐴 β€œ β„•) ∩ 𝐽) βŠ† (◑𝐴 β€œ β„•)
18 cnvimass 6077 . . . . . . . . . 10 (◑𝐴 β€œ β„•) βŠ† dom 𝐴
1918, 14fssdm 6734 . . . . . . . . 9 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ (◑𝐴 β€œ β„•) βŠ† β„•)
2017, 19sstrid 3992 . . . . . . . 8 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ ((◑𝐴 β€œ β„•) ∩ 𝐽) βŠ† β„•)
2120sselda 3981 . . . . . . 7 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ 𝑑 ∈ β„•)
2214fdmd 6725 . . . . . . . . 9 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ dom 𝐴 = β„•)
2322eleq2d 2819 . . . . . . . 8 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ (𝑑 ∈ dom 𝐴 ↔ 𝑑 ∈ β„•))
2423adantr 481 . . . . . . 7 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ (𝑑 ∈ dom 𝐴 ↔ 𝑑 ∈ β„•))
2521, 24mpbird 256 . . . . . 6 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ 𝑑 ∈ dom 𝐴)
26 fvco 6986 . . . . . 6 ((Fun 𝐴 ∧ 𝑑 ∈ dom 𝐴) β†’ ((bits ∘ 𝐴)β€˜π‘‘) = (bitsβ€˜(π΄β€˜π‘‘)))
2716, 25, 26syl2anc 584 . . . . 5 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ ((bits ∘ 𝐴)β€˜π‘‘) = (bitsβ€˜(π΄β€˜π‘‘)))
2827xpeq2d 5705 . . . 4 ((𝐴 ∈ (𝑇 ∩ 𝑅) ∧ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)) β†’ ({𝑑} Γ— ((bits ∘ 𝐴)β€˜π‘‘)) = ({𝑑} Γ— (bitsβ€˜(π΄β€˜π‘‘))))
2928iuneq2dv 5020 . . 3 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— ((bits ∘ 𝐴)β€˜π‘‘)) = βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— (bitsβ€˜(π΄β€˜π‘‘))))
30 eqid 2732 . . . 4 βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— ((bits ∘ 𝐴)β€˜π‘‘)) = βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— ((bits ∘ 𝐴)β€˜π‘‘))
3130marypha2lem2 9427 . . 3 βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— ((bits ∘ 𝐴)β€˜π‘‘)) = {βŸ¨π‘‘, π‘›βŸ© ∣ (𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)β€˜π‘‘))}
3229, 31eqtr3di 2787 . 2 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ βˆͺ 𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽)({𝑑} Γ— (bitsβ€˜(π΄β€˜π‘‘))) = {βŸ¨π‘‘, π‘›βŸ© ∣ (𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)β€˜π‘‘))})
331, 32eqtrid 2784 1 (𝐴 ∈ (𝑇 ∩ 𝑅) β†’ π‘ˆ = {βŸ¨π‘‘, π‘›βŸ© ∣ (𝑑 ∈ ((◑𝐴 β€œ β„•) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)β€˜π‘‘))})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  {crab 3432   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627  βˆͺ ciun 4996   class class class wbr 5147  {copab 5209   ↦ cmpt 5230   Γ— cxp 5673  β—‘ccnv 5674  dom cdm 5675   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407   supp csupp 8142   ↑m cmap 8816  Fincfn 8935  1c1 11107   Β· cmul 11111   ≀ cle 11245  β„•cn 12208  2c2 12263  β„•0cn0 12468  β†‘cexp 14023  Ξ£csu 15628   βˆ₯ cdvds 16193  bitscbits 16356  πŸ­cind 32996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator