Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemb Structured version   Visualization version   GIF version

Theorem eulerpartlemb 34371
Description: Lemma for eulerpart 34385. The set of all partitions of 𝑁 is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
Assertion
Ref Expression
eulerpartlemb 𝑃 ∈ Fin
Distinct variable groups:   𝑓,𝑔,𝑘,𝑥,𝑦   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemb
StepHypRef Expression
1 fzfid 13872 . . . 4 (⊤ → (1...𝑁) ∈ Fin)
2 fzfi 13871 . . . . . 6 (0...𝑁) ∈ Fin
3 snfi 8960 . . . . . 6 {0} ∈ Fin
42, 3ifcli 4521 . . . . 5 if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin
54a1i 11 . . . 4 ((⊤ ∧ 𝑥 ∈ ℕ) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin)
6 eldifn 4080 . . . . . 6 (𝑥 ∈ (ℕ ∖ (1...𝑁)) → ¬ 𝑥 ∈ (1...𝑁))
76adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (ℕ ∖ (1...𝑁))) → ¬ 𝑥 ∈ (1...𝑁))
8 iffalse 4482 . . . . 5 𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0})
9 eqimss 3991 . . . . 5 (if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0} → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0})
107, 8, 93syl 18 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℕ ∖ (1...𝑁))) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0})
111, 5, 10ixpfi2 9229 . . 3 (⊤ → X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin)
1211mptru 1548 . 2 X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin
13 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1413eulerpartleme 34366 . . . 4 (𝑔𝑃 ↔ (𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁))
15 ffn 6647 . . . . . 6 (𝑔:ℕ⟶ℕ0𝑔 Fn ℕ)
16153ad2ant1 1133 . . . . 5 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑔 Fn ℕ)
17 ffvelcdm 7009 . . . . . . . . . . . . 13 ((𝑔:ℕ⟶ℕ0𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℕ0)
18173ad2antl1 1186 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℕ0)
1918nn0red 12435 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℝ)
20 nnre 12124 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
2120adantl 481 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
2219, 21remulcld 11134 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ∈ ℝ)
23 cnvimass 6028 . . . . . . . . . . . . . . . . . 18 (𝑔 “ ℕ) ⊆ dom 𝑔
24 fdm 6656 . . . . . . . . . . . . . . . . . . 19 (𝑔:ℕ⟶ℕ0 → dom 𝑔 = ℕ)
2524adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → dom 𝑔 = ℕ)
2623, 25sseqtrid 3975 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 “ ℕ) ⊆ ℕ)
2726sselda 3932 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
28 ffvelcdm 7009 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝑔𝑘) ∈ ℕ0)
2928adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ ℕ) → (𝑔𝑘) ∈ ℕ0)
3027, 29syldan 591 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → (𝑔𝑘) ∈ ℕ0)
3127nnnn0d 12434 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ0)
3230, 31nn0mulcld 12439 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
3332nn0cnd 12436 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℂ)
34 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → 𝑔:ℕ⟶ℕ0)
35 nnex 12123 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ ∈ V
36 fcdmnn0supp 12430 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℕ ∈ V ∧ 𝑔:ℕ⟶ℕ0) → (𝑔 supp 0) = (𝑔 “ ℕ))
3735, 36mpan 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℕ⟶ℕ0 → (𝑔 supp 0) = (𝑔 “ ℕ))
3837adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) = (𝑔 “ ℕ))
39 eqimss 3991 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 supp 0) = (𝑔 “ ℕ) → (𝑔 supp 0) ⊆ (𝑔 “ ℕ))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) ⊆ (𝑔 “ ℕ))
4135a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ℕ ∈ V)
42 0nn0 12388 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → 0 ∈ ℕ0)
4434, 40, 41, 43suppssr 8120 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → (𝑔𝑘) = 0)
4544oveq1d 7356 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑘) · 𝑘) = (0 · 𝑘))
46 eldifi 4079 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
4746adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → 𝑘 ∈ ℕ)
48 nncn 12125 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
49 mul02 11283 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
5047, 48, 493syl 18 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → (0 · 𝑘) = 0)
5145, 50eqtrd 2765 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑘) · 𝑘) = 0)
52 nnuz 12767 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
5352eqimssi 3993 . . . . . . . . . . . . . . . . . 18 ℕ ⊆ (ℤ‘1)
5453a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ℕ ⊆ (ℤ‘1))
5526, 33, 51, 54sumss 15623 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
56 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 “ ℕ) ∈ Fin)
5756, 32fsumnn0cl 15635 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) ∈ ℕ0)
5855, 57eqeltrrd 2830 . . . . . . . . . . . . . . 15 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0)
59 eleq1 2817 . . . . . . . . . . . . . . 15 𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁 → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0𝑁 ∈ ℕ0))
6058, 59syl5ibcom 245 . . . . . . . . . . . . . 14 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁𝑁 ∈ ℕ0))
61603impia 1117 . . . . . . . . . . . . 13 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑁 ∈ ℕ0)
6261adantr 480 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℕ0)
6362nn0red 12435 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
6418nn0ge0d 12437 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝑔𝑥))
65 nnge1 12145 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
6665adantl 481 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 1 ≤ 𝑥)
6719, 21, 64, 66lemulge11d 12051 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ≤ ((𝑔𝑥) · 𝑥))
6856adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → (𝑔 “ ℕ) ∈ Fin)
6932nn0red 12435 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
7069adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
7132nn0ge0d 12437 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
7271adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
73 fveq2 6817 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑔𝑘) = (𝑔𝑥))
74 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑘 = 𝑥)
7573, 74oveq12d 7359 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → ((𝑔𝑘) · 𝑘) = ((𝑔𝑥) · 𝑥))
76 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → 𝑥 ∈ (𝑔 “ ℕ))
7768, 70, 72, 75, 76fsumge1 15696 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
7877expr 456 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝑔 “ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘)))
79 eldif 3910 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ)) ↔ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ)))
8051ralrimiva 3122 . . . . . . . . . . . . . . . . . . 19 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ∀𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))((𝑔𝑘) · 𝑘) = 0)
8175eqeq1d 2732 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (((𝑔𝑘) · 𝑘) = 0 ↔ ((𝑔𝑥) · 𝑥) = 0))
8281rspccva 3574 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))((𝑔𝑘) · 𝑘) = 0 ∧ 𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8380, 82sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8479, 83sylan2br 595 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8556adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑔 “ ℕ) ∈ Fin)
8632adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
8786nn0red 12435 . . . . . . . . . . . . . . . . . . 19 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
8886nn0ge0d 12437 . . . . . . . . . . . . . . . . . . 19 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
8985, 87, 88fsumge0 15694 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → 0 ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9089adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → 0 ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9184, 90eqbrtrd 5111 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9291expr 456 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (𝑔 “ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘)))
9378, 92pm2.61d 179 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9455adantr 480 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
9593, 94breqtrd 5115 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
96953adantl3 1169 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
97 simpl3 1194 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁)
9896, 97breqtrd 5115 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ 𝑁)
9919, 22, 63, 67, 98letrd 11262 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ≤ 𝑁)
100 nn0uz 12766 . . . . . . . . . . . 12 0 = (ℤ‘0)
10118, 100eleqtrdi 2839 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ (ℤ‘0))
10262nn0zd 12486 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
103 elfz5 13408 . . . . . . . . . . 11 (((𝑔𝑥) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((𝑔𝑥) ∈ (0...𝑁) ↔ (𝑔𝑥) ≤ 𝑁))
104101, 102, 103syl2anc 584 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ (0...𝑁) ↔ (𝑔𝑥) ≤ 𝑁))
10599, 104mpbird 257 . . . . . . . . 9 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ (0...𝑁))
106105adantr 480 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ (0...𝑁))
107 iftrue 4479 . . . . . . . . 9 (𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁))
108107adantl 481 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁))
109106, 108eleqtrrd 2832 . . . . . . 7 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
110 nnge1 12145 . . . . . . . . . . . . . 14 ((𝑔𝑥) ∈ ℕ → 1 ≤ (𝑔𝑥))
111 nnnn0 12380 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
112111adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
113112nn0ge0d 12437 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ 𝑥)
114 lemulge12 11977 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) ∧ (0 ≤ 𝑥 ∧ 1 ≤ (𝑔𝑥))) → 𝑥 ≤ ((𝑔𝑥) · 𝑥))
115114expr 456 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) ∧ 0 ≤ 𝑥) → (1 ≤ (𝑔𝑥) → 𝑥 ≤ ((𝑔𝑥) · 𝑥)))
11621, 19, 113, 115syl21anc 837 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔𝑥) → 𝑥 ≤ ((𝑔𝑥) · 𝑥)))
117 letr 11199 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ ((𝑔𝑥) · 𝑥) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 ≤ ((𝑔𝑥) · 𝑥) ∧ ((𝑔𝑥) · 𝑥) ≤ 𝑁) → 𝑥𝑁))
11821, 22, 63, 117syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑥 ≤ ((𝑔𝑥) · 𝑥) ∧ ((𝑔𝑥) · 𝑥) ≤ 𝑁) → 𝑥𝑁))
11998, 118mpan2d 694 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ ((𝑔𝑥) · 𝑥) → 𝑥𝑁))
120116, 119syld 47 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔𝑥) → 𝑥𝑁))
121110, 120syl5 34 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ → 𝑥𝑁))
122 simpr 484 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
123122, 52eleqtrdi 2839 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
124 elfz5 13408 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥𝑁))
125123, 102, 124syl2anc 584 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥𝑁))
126121, 125sylibrd 259 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ → 𝑥 ∈ (1...𝑁)))
127126con3d 152 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → ¬ (𝑔𝑥) ∈ ℕ))
128 elnn0 12375 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ ℕ0 ↔ ((𝑔𝑥) ∈ ℕ ∨ (𝑔𝑥) = 0))
12918, 128sylib 218 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ ∨ (𝑔𝑥) = 0))
130129ord 864 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ (𝑔𝑥) ∈ ℕ → (𝑔𝑥) = 0))
131127, 130syld 47 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → (𝑔𝑥) = 0))
132131imp 406 . . . . . . . . 9 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) = 0)
133 fvex 6830 . . . . . . . . . 10 (𝑔𝑥) ∈ V
134133elsn 4589 . . . . . . . . 9 ((𝑔𝑥) ∈ {0} ↔ (𝑔𝑥) = 0)
135132, 134sylibr 234 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ {0})
1368adantl 481 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0})
137135, 136eleqtrrd 2832 . . . . . . 7 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
138109, 137pm2.61dan 812 . . . . . 6 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
139138ralrimiva 3122 . . . . 5 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → ∀𝑥 ∈ ℕ (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
140 vex 3438 . . . . . 6 𝑔 ∈ V
141140elixp 8823 . . . . 5 (𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ↔ (𝑔 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})))
14216, 139, 141sylanbrc 583 . . . 4 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
14314, 142sylbi 217 . . 3 (𝑔𝑃𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
144143ssriv 3936 . 2 𝑃X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})
145 ssfi 9077 . 2 ((X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin ∧ 𝑃X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) → 𝑃 ∈ Fin)
14612, 144, 145mp2an 692 1 𝑃 ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wtru 1542  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  c0 4281  ifcif 4473  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  {copab 5151  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343   supp csupp 8085  m cmap 8745  Xcixp 8816  Fincfn 8864  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003  cle 11139  cn 12117  2c2 12172  0cn0 12373  cz 12460  cuz 12724  ...cfz 13399  cexp 13960  Σcsu 15585  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-ico 13243  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator