Proof of Theorem eulerpartlemb
Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . 4
⊢ (⊤
→ (1...𝑁) ∈
Fin) |
2 | | fzfi 13692 |
. . . . . 6
⊢
(0...𝑁) ∈
Fin |
3 | | snfi 8834 |
. . . . . 6
⊢ {0}
∈ Fin |
4 | 2, 3 | ifcli 4506 |
. . . . 5
⊢ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin |
5 | 4 | a1i 11 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ ℕ) → if(𝑥
∈ (1...𝑁), (0...𝑁), {0}) ∈
Fin) |
6 | | eldifn 4062 |
. . . . . 6
⊢ (𝑥 ∈ (ℕ ∖
(1...𝑁)) → ¬ 𝑥 ∈ (1...𝑁)) |
7 | 6 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (ℕ ∖ (1...𝑁))) → ¬ 𝑥 ∈ (1...𝑁)) |
8 | | iffalse 4468 |
. . . . 5
⊢ (¬
𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0}) |
9 | | eqimss 3977 |
. . . . 5
⊢ (if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0} → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0}) |
10 | 7, 8, 9 | 3syl 18 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (ℕ ∖ (1...𝑁))) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0}) |
11 | 1, 5, 10 | ixpfi2 9117 |
. . 3
⊢ (⊤
→ X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin) |
12 | 11 | mptru 1546 |
. 2
⊢ X𝑥 ∈
ℕ if(𝑥 ∈
(1...𝑁), (0...𝑁), {0}) ∈
Fin |
13 | | eulerpart.p |
. . . . 5
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
14 | 13 | eulerpartleme 32330 |
. . . 4
⊢ (𝑔 ∈ 𝑃 ↔ (𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁)) |
15 | | ffn 6600 |
. . . . . 6
⊢ (𝑔:ℕ⟶ℕ0 →
𝑔 Fn
ℕ) |
16 | 15 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) → 𝑔 Fn ℕ) |
17 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝑔:ℕ⟶ℕ0 ∧
𝑥 ∈ ℕ) →
(𝑔‘𝑥) ∈
ℕ0) |
18 | 17 | 3ad2antl1 1184 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ∈
ℕ0) |
19 | 18 | nn0red 12294 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ∈ ℝ) |
20 | | nnre 11980 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
21 | 20 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℝ) |
22 | 19, 21 | remulcld 11005 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) · 𝑥) ∈ ℝ) |
23 | | cnvimass 5989 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑔 “ ℕ) ⊆ dom 𝑔 |
24 | | fdm 6609 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔:ℕ⟶ℕ0 →
dom 𝑔 =
ℕ) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → dom
𝑔 =
ℕ) |
26 | 23, 25 | sseqtrid 3973 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → (◡𝑔 “ ℕ) ⊆
ℕ) |
27 | 26 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ) |
28 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔:ℕ⟶ℕ0 ∧
𝑘 ∈ ℕ) →
(𝑔‘𝑘) ∈
ℕ0) |
29 | 28 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ ℕ) → (𝑔‘𝑘) ∈
ℕ0) |
30 | 27, 29 | syldan 591 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → (𝑔‘𝑘) ∈
ℕ0) |
31 | 27 | nnnn0d 12293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ0) |
32 | 30, 31 | nn0mulcld 12298 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈
ℕ0) |
33 | 32 | nn0cnd 12295 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℂ) |
34 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → 𝑔:ℕ⟶ℕ0) |
35 | | nnex 11979 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℕ
∈ V |
36 | | frnnn0supp 12289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((ℕ
∈ V ∧ 𝑔:ℕ⟶ℕ0) →
(𝑔 supp 0) = (◡𝑔 “ ℕ)) |
37 | 35, 36 | mpan 687 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑔:ℕ⟶ℕ0 →
(𝑔 supp 0) = (◡𝑔 “ ℕ)) |
38 | 37 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) = (◡𝑔 “ ℕ)) |
39 | | eqimss 3977 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔 supp 0) = (◡𝑔 “ ℕ) → (𝑔 supp 0) ⊆ (◡𝑔 “ ℕ)) |
40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) ⊆ (◡𝑔 “ ℕ)) |
41 | 35 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → ℕ
∈ V) |
42 | | 0nn0 12248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ∈
ℕ0 |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → 0 ∈
ℕ0) |
44 | 34, 40, 41, 43 | suppssr 8012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → (𝑔‘𝑘) = 0) |
45 | 44 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → ((𝑔‘𝑘) · 𝑘) = (0 · 𝑘)) |
46 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (ℕ ∖ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ) |
47 | 46 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → 𝑘 ∈ ℕ) |
48 | | nncn 11981 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
49 | | mul02 11153 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℂ → (0
· 𝑘) =
0) |
50 | 47, 48, 49 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → (0 · 𝑘) = 0) |
51 | 45, 50 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → ((𝑔‘𝑘) · 𝑘) = 0) |
52 | | nnuz 12621 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℕ =
(ℤ≥‘1) |
53 | 52 | eqimssi 3979 |
. . . . . . . . . . . . . . . . . 18
⊢ ℕ
⊆ (ℤ≥‘1) |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → ℕ
⊆ (ℤ≥‘1)) |
55 | 26, 33, 51, 54 | sumss 15436 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) →
Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
56 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) → (◡𝑔 “ ℕ) ∈
Fin) |
57 | 56, 32 | fsumnn0cl 15448 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) →
Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) ∈
ℕ0) |
58 | 55, 57 | eqeltrrd 2840 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) →
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) ∈
ℕ0) |
59 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢
(Σ𝑘 ∈
ℕ ((𝑔‘𝑘) · 𝑘) = 𝑁 → (Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0 ↔ 𝑁 ∈
ℕ0)) |
60 | 58, 59 | syl5ibcom 244 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) →
(Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁 → 𝑁 ∈
ℕ0)) |
61 | 60 | 3impia 1116 |
. . . . . . . . . . . . 13
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) → 𝑁 ∈
ℕ0) |
62 | 61 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈
ℕ0) |
63 | 62 | nn0red 12294 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ) |
64 | 18 | nn0ge0d 12296 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝑔‘𝑥)) |
65 | | nnge1 12001 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 1 ≤
𝑥) |
66 | 65 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 1 ≤ 𝑥) |
67 | 19, 21, 64, 66 | lemulge11d 11912 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ≤ ((𝑔‘𝑥) · 𝑥)) |
68 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (◡𝑔 “ ℕ))) → (◡𝑔 “ ℕ) ∈
Fin) |
69 | 32 | nn0red 12294 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℝ) |
70 | 69 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (◡𝑔 “ ℕ))) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℝ) |
71 | 32 | nn0ge0d 12296 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 0 ≤ ((𝑔‘𝑘) · 𝑘)) |
72 | 71 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (◡𝑔 “ ℕ))) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 0 ≤ ((𝑔‘𝑘) · 𝑘)) |
73 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → (𝑔‘𝑘) = (𝑔‘𝑥)) |
74 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑥 → 𝑘 = 𝑥) |
75 | 73, 74 | oveq12d 7293 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑥 → ((𝑔‘𝑘) · 𝑘) = ((𝑔‘𝑥) · 𝑥)) |
76 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (◡𝑔 “ ℕ))) → 𝑥 ∈ (◡𝑔 “ ℕ)) |
77 | 68, 70, 72, 75, 76 | fsumge1 15509 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (◡𝑔 “ ℕ))) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
78 | 77 | expr 457 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (◡𝑔 “ ℕ) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘))) |
79 | | eldif 3897 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (ℕ ∖ (◡𝑔 “ ℕ)) ↔ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (◡𝑔 “ ℕ))) |
80 | 51 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) →
∀𝑘 ∈ (ℕ
∖ (◡𝑔 “ ℕ))((𝑔‘𝑘) · 𝑘) = 0) |
81 | 75 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑥 → (((𝑔‘𝑘) · 𝑘) = 0 ↔ ((𝑔‘𝑥) · 𝑥) = 0)) |
82 | 81 | rspccva 3560 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑘 ∈
(ℕ ∖ (◡𝑔 “ ℕ))((𝑔‘𝑘) · 𝑘) = 0 ∧ 𝑥 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → ((𝑔‘𝑥) · 𝑥) = 0) |
83 | 80, 82 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ (ℕ ∖ (◡𝑔 “ ℕ))) → ((𝑔‘𝑥) · 𝑥) = 0) |
84 | 79, 83 | sylan2br 595 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬
𝑥 ∈ (◡𝑔 “ ℕ))) → ((𝑔‘𝑥) · 𝑥) = 0) |
85 | 56 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (◡𝑔 “ ℕ) ∈
Fin) |
86 | 32 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈
ℕ0) |
87 | 86 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℝ) |
88 | 86 | nn0ge0d 12296 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 0 ≤ ((𝑔‘𝑘) · 𝑘)) |
89 | 85, 87, 88 | fsumge0 15507 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → 0 ≤
Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
90 | 89 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬
𝑥 ∈ (◡𝑔 “ ℕ))) → 0 ≤
Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
91 | 84, 90 | eqbrtrd 5096 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬
𝑥 ∈ (◡𝑔 “ ℕ))) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
92 | 91 | expr 457 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (¬
𝑥 ∈ (◡𝑔 “ ℕ) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘))) |
93 | 78, 92 | pm2.61d 179 |
. . . . . . . . . . . . . 14
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
94 | 55 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) →
Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
95 | 93, 94 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
96 | 95 | 3adantl3 1167 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
97 | | simpl3 1192 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) = 𝑁) |
98 | 96, 97 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) · 𝑥) ≤ 𝑁) |
99 | 19, 22, 63, 67, 98 | letrd 11132 |
. . . . . . . . . 10
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ≤ 𝑁) |
100 | | nn0uz 12620 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
101 | 18, 100 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ∈
(ℤ≥‘0)) |
102 | 62 | nn0zd 12424 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ) |
103 | | elfz5 13248 |
. . . . . . . . . . 11
⊢ (((𝑔‘𝑥) ∈ (ℤ≥‘0)
∧ 𝑁 ∈ ℤ)
→ ((𝑔‘𝑥) ∈ (0...𝑁) ↔ (𝑔‘𝑥) ≤ 𝑁)) |
104 | 101, 102,
103 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) ∈ (0...𝑁) ↔ (𝑔‘𝑥) ≤ 𝑁)) |
105 | 99, 104 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ∈ (0...𝑁)) |
106 | 105 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔‘𝑥) ∈ (0...𝑁)) |
107 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁)) |
108 | 107 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁)) |
109 | 106, 108 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔‘𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) |
110 | | nnge1 12001 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑥) ∈ ℕ → 1 ≤ (𝑔‘𝑥)) |
111 | | nnnn0 12240 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
112 | 111 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0) |
113 | 112 | nn0ge0d 12296 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ 𝑥) |
114 | | lemulge12 11838 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℝ ∧ (𝑔‘𝑥) ∈ ℝ) ∧ (0 ≤ 𝑥 ∧ 1 ≤ (𝑔‘𝑥))) → 𝑥 ≤ ((𝑔‘𝑥) · 𝑥)) |
115 | 114 | expr 457 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ ℝ ∧ (𝑔‘𝑥) ∈ ℝ) ∧ 0 ≤ 𝑥) → (1 ≤ (𝑔‘𝑥) → 𝑥 ≤ ((𝑔‘𝑥) · 𝑥))) |
116 | 21, 19, 113, 115 | syl21anc 835 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔‘𝑥) → 𝑥 ≤ ((𝑔‘𝑥) · 𝑥))) |
117 | | letr 11069 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ ((𝑔‘𝑥) · 𝑥) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 ≤ ((𝑔‘𝑥) · 𝑥) ∧ ((𝑔‘𝑥) · 𝑥) ≤ 𝑁) → 𝑥 ≤ 𝑁)) |
118 | 21, 22, 63, 117 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑥 ≤ ((𝑔‘𝑥) · 𝑥) ∧ ((𝑔‘𝑥) · 𝑥) ≤ 𝑁) → 𝑥 ≤ 𝑁)) |
119 | 98, 118 | mpan2d 691 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ ((𝑔‘𝑥) · 𝑥) → 𝑥 ≤ 𝑁)) |
120 | 116, 119 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔‘𝑥) → 𝑥 ≤ 𝑁)) |
121 | 110, 120 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) ∈ ℕ → 𝑥 ≤ 𝑁)) |
122 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ) |
123 | 122, 52 | eleqtrdi 2849 |
. . . . . . . . . . . . . 14
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈
(ℤ≥‘1)) |
124 | | elfz5 13248 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(ℤ≥‘1) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥 ≤ 𝑁)) |
125 | 123, 102,
124 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥 ≤ 𝑁)) |
126 | 121, 125 | sylibrd 258 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) ∈ ℕ → 𝑥 ∈ (1...𝑁))) |
127 | 126 | con3d 152 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → ¬ (𝑔‘𝑥) ∈ ℕ)) |
128 | | elnn0 12235 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑥) ∈ ℕ0 ↔ ((𝑔‘𝑥) ∈ ℕ ∨ (𝑔‘𝑥) = 0)) |
129 | 18, 128 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔‘𝑥) ∈ ℕ ∨ (𝑔‘𝑥) = 0)) |
130 | 129 | ord 861 |
. . . . . . . . . . 11
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ (𝑔‘𝑥) ∈ ℕ → (𝑔‘𝑥) = 0)) |
131 | 127, 130 | syld 47 |
. . . . . . . . . 10
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → (𝑔‘𝑥) = 0)) |
132 | 131 | imp 407 |
. . . . . . . . 9
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔‘𝑥) = 0) |
133 | | fvex 6787 |
. . . . . . . . . 10
⊢ (𝑔‘𝑥) ∈ V |
134 | 133 | elsn 4576 |
. . . . . . . . 9
⊢ ((𝑔‘𝑥) ∈ {0} ↔ (𝑔‘𝑥) = 0) |
135 | 132, 134 | sylibr 233 |
. . . . . . . 8
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔‘𝑥) ∈ {0}) |
136 | 8 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0}) |
137 | 135, 136 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔‘𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) |
138 | 109, 137 | pm2.61dan 810 |
. . . . . 6
⊢ (((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔‘𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) |
139 | 138 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) → ∀𝑥 ∈ ℕ (𝑔‘𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) |
140 | | vex 3436 |
. . . . . 6
⊢ 𝑔 ∈ V |
141 | 140 | elixp 8692 |
. . . . 5
⊢ (𝑔 ∈ X𝑥 ∈
ℕ if(𝑥 ∈
(1...𝑁), (0...𝑁), {0}) ↔ (𝑔 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑔‘𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))) |
142 | 16, 139, 141 | sylanbrc 583 |
. . . 4
⊢ ((𝑔:ℕ⟶ℕ0 ∧
(◡𝑔 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑔‘𝑘) · 𝑘) = 𝑁) → 𝑔 ∈ X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) |
143 | 14, 142 | sylbi 216 |
. . 3
⊢ (𝑔 ∈ 𝑃 → 𝑔 ∈ X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) |
144 | 143 | ssriv 3925 |
. 2
⊢ 𝑃 ⊆ X𝑥 ∈
ℕ if(𝑥 ∈
(1...𝑁), (0...𝑁), {0}) |
145 | | ssfi 8956 |
. 2
⊢ ((X𝑥 ∈
ℕ if(𝑥 ∈
(1...𝑁), (0...𝑁), {0}) ∈ Fin ∧ 𝑃 ⊆ X𝑥 ∈
ℕ if(𝑥 ∈
(1...𝑁), (0...𝑁), {0})) → 𝑃 ∈ Fin) |
146 | 12, 144, 145 | mp2an 689 |
1
⊢ 𝑃 ∈ Fin |