Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemb Structured version   Visualization version   GIF version

Theorem eulerpartlemb 31626
Description: Lemma for eulerpart 31640. The set of all partitions of 𝑁 is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
Assertion
Ref Expression
eulerpartlemb 𝑃 ∈ Fin
Distinct variable groups:   𝑓,𝑔,𝑘,𝑥,𝑦   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemb
StepHypRef Expression
1 fzfid 13342 . . . 4 (⊤ → (1...𝑁) ∈ Fin)
2 fzfi 13341 . . . . . 6 (0...𝑁) ∈ Fin
3 snfi 8594 . . . . . 6 {0} ∈ Fin
42, 3ifcli 4513 . . . . 5 if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin
54a1i 11 . . . 4 ((⊤ ∧ 𝑥 ∈ ℕ) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin)
6 eldifn 4104 . . . . . 6 (𝑥 ∈ (ℕ ∖ (1...𝑁)) → ¬ 𝑥 ∈ (1...𝑁))
76adantl 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ (ℕ ∖ (1...𝑁))) → ¬ 𝑥 ∈ (1...𝑁))
8 iffalse 4476 . . . . 5 𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0})
9 eqimss 4023 . . . . 5 (if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0} → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0})
107, 8, 93syl 18 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℕ ∖ (1...𝑁))) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0})
111, 5, 10ixpfi2 8822 . . 3 (⊤ → X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin)
1211mptru 1544 . 2 X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin
13 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1413eulerpartleme 31621 . . . 4 (𝑔𝑃 ↔ (𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁))
15 ffn 6514 . . . . . 6 (𝑔:ℕ⟶ℕ0𝑔 Fn ℕ)
16153ad2ant1 1129 . . . . 5 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑔 Fn ℕ)
17 ffvelrn 6849 . . . . . . . . . . . . 13 ((𝑔:ℕ⟶ℕ0𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℕ0)
18173ad2antl1 1181 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℕ0)
1918nn0red 11957 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℝ)
20 nnre 11645 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
2120adantl 484 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
2219, 21remulcld 10671 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ∈ ℝ)
23 cnvimass 5949 . . . . . . . . . . . . . . . . . 18 (𝑔 “ ℕ) ⊆ dom 𝑔
24 fdm 6522 . . . . . . . . . . . . . . . . . . 19 (𝑔:ℕ⟶ℕ0 → dom 𝑔 = ℕ)
2524adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → dom 𝑔 = ℕ)
2623, 25sseqtrid 4019 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 “ ℕ) ⊆ ℕ)
2726sselda 3967 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
28 ffvelrn 6849 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝑔𝑘) ∈ ℕ0)
2928adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ ℕ) → (𝑔𝑘) ∈ ℕ0)
3027, 29syldan 593 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → (𝑔𝑘) ∈ ℕ0)
3127nnnn0d 11956 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ0)
3230, 31nn0mulcld 11961 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
3332nn0cnd 11958 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℂ)
34 simpl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → 𝑔:ℕ⟶ℕ0)
35 nnex 11644 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ ∈ V
36 frnnn0supp 11954 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℕ ∈ V ∧ 𝑔:ℕ⟶ℕ0) → (𝑔 supp 0) = (𝑔 “ ℕ))
3735, 36mpan 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℕ⟶ℕ0 → (𝑔 supp 0) = (𝑔 “ ℕ))
3837adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) = (𝑔 “ ℕ))
39 eqimss 4023 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 supp 0) = (𝑔 “ ℕ) → (𝑔 supp 0) ⊆ (𝑔 “ ℕ))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) ⊆ (𝑔 “ ℕ))
4135a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ℕ ∈ V)
42 0nn0 11913 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → 0 ∈ ℕ0)
4434, 40, 41, 43suppssr 7861 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → (𝑔𝑘) = 0)
4544oveq1d 7171 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑘) · 𝑘) = (0 · 𝑘))
46 eldifi 4103 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
4746adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → 𝑘 ∈ ℕ)
48 nncn 11646 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
49 mul02 10818 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
5047, 48, 493syl 18 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → (0 · 𝑘) = 0)
5145, 50eqtrd 2856 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑘) · 𝑘) = 0)
52 nnuz 12282 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
5352eqimssi 4025 . . . . . . . . . . . . . . . . . 18 ℕ ⊆ (ℤ‘1)
5453a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ℕ ⊆ (ℤ‘1))
5526, 33, 51, 54sumss 15081 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
56 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 “ ℕ) ∈ Fin)
5756, 32fsumnn0cl 15093 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) ∈ ℕ0)
5855, 57eqeltrrd 2914 . . . . . . . . . . . . . . 15 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0)
59 eleq1 2900 . . . . . . . . . . . . . . 15 𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁 → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0𝑁 ∈ ℕ0))
6058, 59syl5ibcom 247 . . . . . . . . . . . . . 14 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁𝑁 ∈ ℕ0))
61603impia 1113 . . . . . . . . . . . . 13 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑁 ∈ ℕ0)
6261adantr 483 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℕ0)
6362nn0red 11957 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
6418nn0ge0d 11959 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝑔𝑥))
65 nnge1 11666 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
6665adantl 484 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 1 ≤ 𝑥)
6719, 21, 64, 66lemulge11d 11577 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ≤ ((𝑔𝑥) · 𝑥))
6856adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → (𝑔 “ ℕ) ∈ Fin)
6932nn0red 11957 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
7069adantlr 713 . . . . . . . . . . . . . . . . 17 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
7132nn0ge0d 11959 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
7271adantlr 713 . . . . . . . . . . . . . . . . 17 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
73 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑔𝑘) = (𝑔𝑥))
74 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑘 = 𝑥)
7573, 74oveq12d 7174 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → ((𝑔𝑘) · 𝑘) = ((𝑔𝑥) · 𝑥))
76 simprr 771 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → 𝑥 ∈ (𝑔 “ ℕ))
7768, 70, 72, 75, 76fsumge1 15152 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
7877expr 459 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝑔 “ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘)))
79 eldif 3946 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ)) ↔ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ)))
8051ralrimiva 3182 . . . . . . . . . . . . . . . . . . 19 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ∀𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))((𝑔𝑘) · 𝑘) = 0)
8175eqeq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (((𝑔𝑘) · 𝑘) = 0 ↔ ((𝑔𝑥) · 𝑥) = 0))
8281rspccva 3622 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))((𝑔𝑘) · 𝑘) = 0 ∧ 𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8380, 82sylan 582 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8479, 83sylan2br 596 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8556adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑔 “ ℕ) ∈ Fin)
8632adantlr 713 . . . . . . . . . . . . . . . . . . . 20 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
8786nn0red 11957 . . . . . . . . . . . . . . . . . . 19 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
8886nn0ge0d 11959 . . . . . . . . . . . . . . . . . . 19 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
8985, 87, 88fsumge0 15150 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → 0 ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9089adantrr 715 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → 0 ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9184, 90eqbrtrd 5088 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9291expr 459 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (𝑔 “ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘)))
9378, 92pm2.61d 181 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9455adantr 483 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
9593, 94breqtrd 5092 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
96953adantl3 1164 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
97 simpl3 1189 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁)
9896, 97breqtrd 5092 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ 𝑁)
9919, 22, 63, 67, 98letrd 10797 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ≤ 𝑁)
100 nn0uz 12281 . . . . . . . . . . . 12 0 = (ℤ‘0)
10118, 100eleqtrdi 2923 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ (ℤ‘0))
10262nn0zd 12086 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
103 elfz5 12901 . . . . . . . . . . 11 (((𝑔𝑥) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((𝑔𝑥) ∈ (0...𝑁) ↔ (𝑔𝑥) ≤ 𝑁))
104101, 102, 103syl2anc 586 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ (0...𝑁) ↔ (𝑔𝑥) ≤ 𝑁))
10599, 104mpbird 259 . . . . . . . . 9 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ (0...𝑁))
106105adantr 483 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ (0...𝑁))
107 iftrue 4473 . . . . . . . . 9 (𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁))
108107adantl 484 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁))
109106, 108eleqtrrd 2916 . . . . . . 7 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
110 nnge1 11666 . . . . . . . . . . . . . 14 ((𝑔𝑥) ∈ ℕ → 1 ≤ (𝑔𝑥))
111 nnnn0 11905 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
112111adantl 484 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
113112nn0ge0d 11959 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ 𝑥)
114 lemulge12 11503 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) ∧ (0 ≤ 𝑥 ∧ 1 ≤ (𝑔𝑥))) → 𝑥 ≤ ((𝑔𝑥) · 𝑥))
115114expr 459 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) ∧ 0 ≤ 𝑥) → (1 ≤ (𝑔𝑥) → 𝑥 ≤ ((𝑔𝑥) · 𝑥)))
11621, 19, 113, 115syl21anc 835 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔𝑥) → 𝑥 ≤ ((𝑔𝑥) · 𝑥)))
117 letr 10734 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ ((𝑔𝑥) · 𝑥) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 ≤ ((𝑔𝑥) · 𝑥) ∧ ((𝑔𝑥) · 𝑥) ≤ 𝑁) → 𝑥𝑁))
11821, 22, 63, 117syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑥 ≤ ((𝑔𝑥) · 𝑥) ∧ ((𝑔𝑥) · 𝑥) ≤ 𝑁) → 𝑥𝑁))
11998, 118mpan2d 692 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ ((𝑔𝑥) · 𝑥) → 𝑥𝑁))
120116, 119syld 47 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔𝑥) → 𝑥𝑁))
121110, 120syl5 34 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ → 𝑥𝑁))
122 simpr 487 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
123122, 52eleqtrdi 2923 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
124 elfz5 12901 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥𝑁))
125123, 102, 124syl2anc 586 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥𝑁))
126121, 125sylibrd 261 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ → 𝑥 ∈ (1...𝑁)))
127126con3d 155 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → ¬ (𝑔𝑥) ∈ ℕ))
128 elnn0 11900 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ ℕ0 ↔ ((𝑔𝑥) ∈ ℕ ∨ (𝑔𝑥) = 0))
12918, 128sylib 220 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ ∨ (𝑔𝑥) = 0))
130129ord 860 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ (𝑔𝑥) ∈ ℕ → (𝑔𝑥) = 0))
131127, 130syld 47 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → (𝑔𝑥) = 0))
132131imp 409 . . . . . . . . 9 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) = 0)
133 fvex 6683 . . . . . . . . . 10 (𝑔𝑥) ∈ V
134133elsn 4582 . . . . . . . . 9 ((𝑔𝑥) ∈ {0} ↔ (𝑔𝑥) = 0)
135132, 134sylibr 236 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ {0})
1368adantl 484 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0})
137135, 136eleqtrrd 2916 . . . . . . 7 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
138109, 137pm2.61dan 811 . . . . . 6 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
139138ralrimiva 3182 . . . . 5 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → ∀𝑥 ∈ ℕ (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
140 vex 3497 . . . . . 6 𝑔 ∈ V
141140elixp 8468 . . . . 5 (𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ↔ (𝑔 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})))
14216, 139, 141sylanbrc 585 . . . 4 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
14314, 142sylbi 219 . . 3 (𝑔𝑃𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
144143ssriv 3971 . 2 𝑃X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})
145 ssfi 8738 . 2 ((X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin ∧ 𝑃X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) → 𝑃 ∈ Fin)
14612, 144, 145mp2an 690 1 𝑃 ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  cin 3935  wss 3936  c0 4291  ifcif 4467  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  {copab 5128  cmpt 5146  ccnv 5554  dom cdm 5555  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158   supp csupp 7830  m cmap 8406  Xcixp 8461  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  cle 10676  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  cexp 13430  Σcsu 15042  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator