| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f002 | Structured version Visualization version GIF version | ||
| Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f002.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| f002 | ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f002.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feq3 6626 | . . 3 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) | |
| 3 | f00 6700 | . . . 4 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
| 5 | 2, 4 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 → 𝐴 = ∅)) |
| 6 | 1, 5 | syl5com 31 | 1 ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∅c0 4278 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: func0g 49121 functhincfun 49481 fullthinc2 49483 thincciso 49485 |
| Copyright terms: Public domain | W3C validator |