Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f002 Structured version   Visualization version   GIF version

Theorem f002 48885
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypothesis
Ref Expression
f002.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
f002 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))

Proof of Theorem f002
StepHypRef Expression
1 f002.1 . 2 (𝜑𝐹:𝐴𝐵)
2 feq3 6626 . . 3 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
3 f00 6700 . . . 4 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
52, 4biimtrdi 253 . 2 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐴 = ∅))
61, 5syl5com 31 1 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  c0 4278  wf 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-fun 6478  df-fn 6479  df-f 6480
This theorem is referenced by:  func0g  49121  functhincfun  49481  fullthinc2  49483  thincciso  49485
  Copyright terms: Public domain W3C validator