| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f002 | Structured version Visualization version GIF version | ||
| Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f002.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| f002 | ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f002.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feq3 6650 | . . 3 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) | |
| 3 | f00 6724 | . . . 4 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
| 5 | 2, 4 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 → 𝐴 = ∅)) |
| 6 | 1, 5 | syl5com 31 | 1 ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∅c0 4292 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: func0g 49051 functhincfun 49411 fullthinc2 49413 thincciso 49415 |
| Copyright terms: Public domain | W3C validator |