Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f002 Structured version   Visualization version   GIF version

Theorem f002 46181
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypothesis
Ref Expression
f002.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
f002 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))

Proof of Theorem f002
StepHypRef Expression
1 f002.1 . 2 (𝜑𝐹:𝐴𝐵)
2 feq3 6583 . . 3 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
3 f00 6656 . . . 4 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
43simprbi 497 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
52, 4syl6bi 252 . 2 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐴 = ∅))
61, 5syl5com 31 1 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  c0 4256  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  fullthinc2  46328  thincciso  46330
  Copyright terms: Public domain W3C validator