Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f002 Structured version   Visualization version   GIF version

Theorem f002 47609
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypothesis
Ref Expression
f002.1 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
Assertion
Ref Expression
f002 (πœ‘ β†’ (𝐡 = βˆ… β†’ 𝐴 = βˆ…))

Proof of Theorem f002
StepHypRef Expression
1 f002.1 . 2 (πœ‘ β†’ 𝐹:𝐴⟢𝐡)
2 feq3 6701 . . 3 (𝐡 = βˆ… β†’ (𝐹:𝐴⟢𝐡 ↔ 𝐹:π΄βŸΆβˆ…))
3 f00 6774 . . . 4 (𝐹:π΄βŸΆβˆ… ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
43simprbi 495 . . 3 (𝐹:π΄βŸΆβˆ… β†’ 𝐴 = βˆ…)
52, 4syl6bi 252 . 2 (𝐡 = βˆ… β†’ (𝐹:𝐴⟢𝐡 β†’ 𝐴 = βˆ…))
61, 5syl5com 31 1 (πœ‘ β†’ (𝐡 = βˆ… β†’ 𝐴 = βˆ…))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539  βˆ…c0 4323  βŸΆwf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by:  fullthinc2  47756  thincciso  47758
  Copyright terms: Public domain W3C validator