Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f002 Structured version   Visualization version   GIF version

Theorem f002 46069
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypothesis
Ref Expression
f002.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
f002 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))

Proof of Theorem f002
StepHypRef Expression
1 f002.1 . 2 (𝜑𝐹:𝐴𝐵)
2 feq3 6567 . . 3 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐹:𝐴⟶∅))
3 f00 6640 . . . 4 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
52, 4syl6bi 252 . 2 (𝐵 = ∅ → (𝐹:𝐴𝐵𝐴 = ∅))
61, 5syl5com 31 1 (𝜑 → (𝐵 = ∅ → 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  c0 4253  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  fullthinc2  46216  thincciso  46218
  Copyright terms: Public domain W3C validator