![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f002 | Structured version Visualization version GIF version |
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f002.1 | β’ (π β πΉ:π΄βΆπ΅) |
Ref | Expression |
---|---|
f002 | β’ (π β (π΅ = β β π΄ = β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f002.1 | . 2 β’ (π β πΉ:π΄βΆπ΅) | |
2 | feq3 6701 | . . 3 β’ (π΅ = β β (πΉ:π΄βΆπ΅ β πΉ:π΄βΆβ )) | |
3 | f00 6774 | . . . 4 β’ (πΉ:π΄βΆβ β (πΉ = β β§ π΄ = β )) | |
4 | 3 | simprbi 495 | . . 3 β’ (πΉ:π΄βΆβ β π΄ = β ) |
5 | 2, 4 | syl6bi 252 | . 2 β’ (π΅ = β β (πΉ:π΄βΆπ΅ β π΄ = β )) |
6 | 1, 5 | syl5com 31 | 1 β’ (π β (π΅ = β β π΄ = β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β c0 4323 βΆwf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 |
This theorem is referenced by: fullthinc2 47756 thincciso 47758 |
Copyright terms: Public domain | W3C validator |