| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f002 | Structured version Visualization version GIF version | ||
| Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| f002.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| f002 | ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f002.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feq3 6693 | . . 3 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) | |
| 3 | f00 6765 | . . . 4 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
| 5 | 2, 4 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 → 𝐴 = ∅)) |
| 6 | 1, 5 | syl5com 31 | 1 ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∅c0 4313 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: func0g 49021 functhincfun 49302 fullthinc2 49304 thincciso 49306 |
| Copyright terms: Public domain | W3C validator |