![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f002 | Structured version Visualization version GIF version |
Description: A function with an empty codomain must have empty domain. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
f002.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
f002 | ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f002.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feq3 6730 | . . 3 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐴⟶∅)) | |
3 | f00 6803 | . . . 4 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | |
4 | 3 | simprbi 496 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
5 | 2, 4 | biimtrdi 253 | . 2 ⊢ (𝐵 = ∅ → (𝐹:𝐴⟶𝐵 → 𝐴 = ∅)) |
6 | 1, 5 | syl5com 31 | 1 ⊢ (𝜑 → (𝐵 = ∅ → 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∅c0 4352 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fullthinc2 48714 thincciso 48716 |
Copyright terms: Public domain | W3C validator |