![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullthinc2 | Structured version Visualization version GIF version |
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
fullthinc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullthinc.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fullthinc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fullthinc.d | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
fullthinc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
fullthinc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fullthinc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fullthinc2 | ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullthinc2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | fullthinc2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | fullthinc2.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
4 | fullthinc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | fullthinc.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
6 | fullthinc.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | fullthinc.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ThinCat) | |
8 | fullfunc 17923 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
9 | 8 | ssbri 5190 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 4, 5, 6, 7, 10 | fullthinc 48403 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
12 | 3, 11 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
13 | oveq12 7425 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
14 | 13 | eqeq1d 2728 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
15 | simpl 481 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
16 | 15 | fveq2d 6897 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
17 | simpr 483 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
18 | 17 | fveq2d 6897 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
19 | 16, 18 | oveq12d 7434 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
20 | 19 | eqeq1d 2728 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
21 | 14, 20 | imbi12d 343 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
22 | 21 | rspc2gv 3617 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
23 | 22 | imp 405 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
24 | 1, 2, 12, 23 | syl21anc 836 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
25 | 4, 6, 5, 10, 1, 2 | funcf2 17882 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | f002 48257 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
27 | 24, 26 | impbid 211 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∅c0 4322 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 Hom chom 17272 Func cfunc 17868 Full cful 17919 ThinCatcthinc 48376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-map 8849 df-ixp 8919 df-func 17872 df-full 17921 df-thinc 48377 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |