![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullthinc2 | Structured version Visualization version GIF version |
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
fullthinc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullthinc.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fullthinc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fullthinc.d | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
fullthinc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
fullthinc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fullthinc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fullthinc2 | ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullthinc2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | fullthinc2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | fullthinc2.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
4 | fullthinc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | fullthinc.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
6 | fullthinc.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | fullthinc.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ThinCat) | |
8 | fullfunc 17858 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
9 | 8 | ssbri 5183 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 4, 5, 6, 7, 10 | fullthinc 47854 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
12 | 3, 11 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
13 | oveq12 7410 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
14 | 13 | eqeq1d 2726 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
15 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
16 | 15 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
17 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
18 | 17 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
19 | 16, 18 | oveq12d 7419 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
20 | 19 | eqeq1d 2726 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
21 | 14, 20 | imbi12d 344 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
22 | 21 | rspc2gv 3613 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
23 | 22 | imp 406 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
24 | 1, 2, 12, 23 | syl21anc 835 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
25 | 4, 6, 5, 10, 1, 2 | funcf2 17817 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | f002 47708 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
27 | 24, 26 | impbid 211 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∅c0 4314 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 Basecbs 17143 Hom chom 17207 Func cfunc 17803 Full cful 17854 ThinCatcthinc 47827 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8818 df-ixp 8888 df-func 17807 df-full 17856 df-thinc 47828 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |