| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fullthinc2 | Structured version Visualization version GIF version | ||
| Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| Ref | Expression |
|---|---|
| fullthinc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fullthinc.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| fullthinc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fullthinc.d | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
| fullthinc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| fullthinc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fullthinc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fullthinc2 | ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullthinc2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | fullthinc2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | fullthinc2.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 4 | fullthinc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | fullthinc.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 6 | fullthinc.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 7 | fullthinc.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ThinCat) | |
| 8 | fullfunc 17926 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 9 | 8 | ssbri 5169 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 11 | 4, 5, 6, 7, 10 | fullthinc 49316 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
| 12 | 3, 11 | mpbid 232 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
| 13 | oveq12 7419 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 14 | 13 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
| 15 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 16 | 15 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 17 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 18 | 17 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
| 19 | 16, 18 | oveq12d 7428 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 20 | 19 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
| 21 | 14, 20 | imbi12d 344 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
| 22 | 21 | rspc2gv 3616 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
| 23 | 22 | imp 406 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
| 24 | 1, 2, 12, 23 | syl21anc 837 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
| 25 | 4, 6, 5, 10, 1, 2 | funcf2 17886 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 26 | 25 | f002 48812 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
| 27 | 24, 26 | impbid 212 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∅c0 4313 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 Func cfunc 17872 Full cful 17922 ThinCatcthinc 49283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-ixp 8917 df-func 17876 df-full 17924 df-thinc 49284 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |