Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc2 Structured version   Visualization version   GIF version

Theorem fullthinc2 46328
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc2.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fullthinc2.x (𝜑𝑋𝐵)
fullthinc2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fullthinc2 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))

Proof of Theorem fullthinc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullthinc2.x . . 3 (𝜑𝑋𝐵)
2 fullthinc2.y . . 3 (𝜑𝑌𝐵)
3 fullthinc2.f . . . 4 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
4 fullthinc.b . . . . 5 𝐵 = (Base‘𝐶)
5 fullthinc.j . . . . 5 𝐽 = (Hom ‘𝐷)
6 fullthinc.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 fullthinc.d . . . . 5 (𝜑𝐷 ∈ ThinCat)
8 fullfunc 17622 . . . . . . 7 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
98ssbri 5119 . . . . . 6 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
103, 9syl 17 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
114, 5, 6, 7, 10fullthinc 46327 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
123, 11mpbid 231 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
13 oveq12 7284 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1413eqeq1d 2740 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
15 simpl 483 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1615fveq2d 6778 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
17 simpr 485 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1817fveq2d 6778 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1916, 18oveq12d 7293 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2019eqeq1d 2740 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
2114, 20imbi12d 345 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2221rspc2gv 3569 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2322imp 407 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
241, 2, 12, 23syl21anc 835 . 2 (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
254, 6, 5, 10, 1, 2funcf2 17583 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2625f002 46181 . 2 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
2724, 26impbid 211 1 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  c0 4256   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973   Func cfunc 17569   Full cful 17618  ThinCatcthinc 46300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-ixp 8686  df-func 17573  df-full 17620  df-thinc 46301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator