![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullthinc2 | Structured version Visualization version GIF version |
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
fullthinc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullthinc.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fullthinc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fullthinc.d | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
fullthinc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
fullthinc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fullthinc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fullthinc2 | ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullthinc2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | fullthinc2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | fullthinc2.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
4 | fullthinc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | fullthinc.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
6 | fullthinc.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | fullthinc.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ThinCat) | |
8 | fullfunc 17822 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
9 | 8 | ssbri 5170 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 4, 5, 6, 7, 10 | fullthinc 47219 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
12 | 3, 11 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
13 | oveq12 7386 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
14 | 13 | eqeq1d 2733 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
15 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
16 | 15 | fveq2d 6866 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
17 | simpr 485 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
18 | 17 | fveq2d 6866 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
19 | 16, 18 | oveq12d 7395 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
20 | 19 | eqeq1d 2733 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
21 | 14, 20 | imbi12d 344 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
22 | 21 | rspc2gv 3603 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
23 | 22 | imp 407 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
24 | 1, 2, 12, 23 | syl21anc 836 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
25 | 4, 6, 5, 10, 1, 2 | funcf2 17783 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | f002 47073 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
27 | 24, 26 | impbid 211 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ∅c0 4302 class class class wbr 5125 ‘cfv 6516 (class class class)co 7377 Basecbs 17109 Hom chom 17173 Func cfunc 17769 Full cful 17818 ThinCatcthinc 47192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5262 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-id 5551 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-ov 7380 df-oprab 7381 df-mpo 7382 df-1st 7941 df-2nd 7942 df-map 8789 df-ixp 8858 df-func 17773 df-full 17820 df-thinc 47193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |