Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc2 Structured version   Visualization version   GIF version

Theorem fullthinc2 49317
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc2.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fullthinc2.x (𝜑𝑋𝐵)
fullthinc2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fullthinc2 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))

Proof of Theorem fullthinc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullthinc2.x . . 3 (𝜑𝑋𝐵)
2 fullthinc2.y . . 3 (𝜑𝑌𝐵)
3 fullthinc2.f . . . 4 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
4 fullthinc.b . . . . 5 𝐵 = (Base‘𝐶)
5 fullthinc.j . . . . 5 𝐽 = (Hom ‘𝐷)
6 fullthinc.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 fullthinc.d . . . . 5 (𝜑𝐷 ∈ ThinCat)
8 fullfunc 17926 . . . . . . 7 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
98ssbri 5169 . . . . . 6 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
103, 9syl 17 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
114, 5, 6, 7, 10fullthinc 49316 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
123, 11mpbid 232 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
13 oveq12 7419 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1413eqeq1d 2738 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
15 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1615fveq2d 6885 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
17 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1817fveq2d 6885 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1916, 18oveq12d 7428 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2019eqeq1d 2738 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
2114, 20imbi12d 344 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2221rspc2gv 3616 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2322imp 406 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
241, 2, 12, 23syl21anc 837 . 2 (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
254, 6, 5, 10, 1, 2funcf2 17886 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2625f002 48812 . 2 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
2724, 26impbid 212 1 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  c0 4313   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287   Func cfunc 17872   Full cful 17922  ThinCatcthinc 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-ixp 8917  df-func 17876  df-full 17924  df-thinc 49284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator