Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc2 Structured version   Visualization version   GIF version

Theorem fullthinc2 49482
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc2.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fullthinc2.x (𝜑𝑋𝐵)
fullthinc2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fullthinc2 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))

Proof of Theorem fullthinc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullthinc2.x . . 3 (𝜑𝑋𝐵)
2 fullthinc2.y . . 3 (𝜑𝑌𝐵)
3 fullthinc2.f . . . 4 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
4 fullthinc.b . . . . 5 𝐵 = (Base‘𝐶)
5 fullthinc.j . . . . 5 𝐽 = (Hom ‘𝐷)
6 fullthinc.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 fullthinc.d . . . . 5 (𝜑𝐷 ∈ ThinCat)
8 fullfunc 17812 . . . . . . 7 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
98ssbri 5136 . . . . . 6 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
103, 9syl 17 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
114, 5, 6, 7, 10fullthinc 49481 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
123, 11mpbid 232 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
13 oveq12 7355 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1413eqeq1d 2733 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
15 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1615fveq2d 6826 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
17 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1817fveq2d 6826 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1916, 18oveq12d 7364 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2019eqeq1d 2733 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
2114, 20imbi12d 344 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2221rspc2gv 3587 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2322imp 406 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
241, 2, 12, 23syl21anc 837 . 2 (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
254, 6, 5, 10, 1, 2funcf2 17772 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2625f002 48884 . 2 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
2724, 26impbid 212 1 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  c0 4283   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169   Func cfunc 17758   Full cful 17808  ThinCatcthinc 49448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-full 17810  df-thinc 49449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator