Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fullthinc2 Structured version   Visualization version   GIF version

Theorem fullthinc2 48847
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
fullthinc.b 𝐵 = (Base‘𝐶)
fullthinc.j 𝐽 = (Hom ‘𝐷)
fullthinc.h 𝐻 = (Hom ‘𝐶)
fullthinc.d (𝜑𝐷 ∈ ThinCat)
fullthinc2.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fullthinc2.x (𝜑𝑋𝐵)
fullthinc2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fullthinc2 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))

Proof of Theorem fullthinc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullthinc2.x . . 3 (𝜑𝑋𝐵)
2 fullthinc2.y . . 3 (𝜑𝑌𝐵)
3 fullthinc2.f . . . 4 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
4 fullthinc.b . . . . 5 𝐵 = (Base‘𝐶)
5 fullthinc.j . . . . 5 𝐽 = (Hom ‘𝐷)
6 fullthinc.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 fullthinc.d . . . . 5 (𝜑𝐷 ∈ ThinCat)
8 fullfunc 17960 . . . . . . 7 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
98ssbri 5193 . . . . . 6 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
103, 9syl 17 . . . . 5 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
114, 5, 6, 7, 10fullthinc 48846 . . . 4 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
123, 11mpbid 232 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))
13 oveq12 7440 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
1413eqeq1d 2737 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
15 simpl 482 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1615fveq2d 6911 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑥) = (𝐹𝑋))
17 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1817fveq2d 6911 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹𝑦) = (𝐹𝑌))
1916, 18oveq12d 7449 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2019eqeq1d 2737 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
2114, 20imbi12d 344 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2221rspc2gv 3632 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅)))
2322imp 406 . . 3 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
241, 2, 12, 23syl21anc 838 . 2 (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
254, 6, 5, 10, 1, 2funcf2 17919 . . 3 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)𝐽(𝐹𝑌)))
2625f002 48684 . 2 (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
2724, 26impbid 212 1 (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309   Func cfunc 17905   Full cful 17956  ThinCatcthinc 48819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-ixp 8937  df-func 17909  df-full 17958  df-thinc 48820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator