Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fullthinc2 | Structured version Visualization version GIF version |
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
Ref | Expression |
---|---|
fullthinc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullthinc.j | ⊢ 𝐽 = (Hom ‘𝐷) |
fullthinc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
fullthinc.d | ⊢ (𝜑 → 𝐷 ∈ ThinCat) |
fullthinc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
fullthinc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
fullthinc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fullthinc2 | ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullthinc2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | fullthinc2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | fullthinc2.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
4 | fullthinc.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | fullthinc.j | . . . . 5 ⊢ 𝐽 = (Hom ‘𝐷) | |
6 | fullthinc.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
7 | fullthinc.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ThinCat) | |
8 | fullfunc 17538 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
9 | 8 | ssbri 5115 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
10 | 3, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
11 | 4, 5, 6, 7, 10 | fullthinc 46215 | . . . 4 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) |
12 | 3, 11 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) |
13 | oveq12 7264 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌)) | |
14 | 13 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
15 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
16 | 15 | fveq2d 6760 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
17 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
18 | 17 | fveq2d 6760 | . . . . . . . 8 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹‘𝑦) = (𝐹‘𝑌)) |
19 | 16, 18 | oveq12d 7273 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
20 | 19 | eqeq1d 2740 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
21 | 14, 20 | imbi12d 344 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) ↔ ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
22 | 21 | rspc2gv 3561 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅))) |
23 | 22 | imp 406 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
24 | 1, 2, 12, 23 | syl21anc 834 | . 2 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ → ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
25 | 4, 6, 5, 10, 1, 2 | funcf2 17499 | . . 3 ⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
26 | 25 | f002 46069 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) |
27 | 24, 26 | impbid 211 | 1 ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Hom chom 16899 Func cfunc 17485 Full cful 17534 ThinCatcthinc 46188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-ixp 8644 df-func 17489 df-full 17536 df-thinc 46189 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |