| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version GIF version | ||
| Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6654 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
| 2 | frn 6658 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
| 3 | ss0 4352 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
| 5 | dm0rn0 5864 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 6 | 4, 5 | sylibr 234 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
| 7 | df-fn 6484 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
| 8 | 1, 6, 7 | sylanbrc 583 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
| 9 | fn0 6612 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
| 11 | fdm 6660 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
| 12 | 11, 6 | eqtr3d 2768 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
| 13 | 10, 12 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| 14 | f0 6704 | . . 3 ⊢ ∅:∅⟶∅ | |
| 15 | feq1 6629 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
| 16 | feq2 6630 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
| 17 | 15, 16 | sylan9bb 509 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
| 18 | 14, 17 | mpbiri 258 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
| 19 | 13, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3902 ∅c0 4283 dom cdm 5616 ran crn 5617 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: dom0 9018 cantnff 9564 0wrd0 14447 supcvg 15763 ram0 16934 itgsubstlem 25983 uhgr0vb 29051 lfuhgr1v0e 29233 wlkv0 29629 sate0fv0 35459 prv0 35472 ismgmOLD 37896 mof0 48875 mof0ALT 48877 mofeu 48885 fdomne0 48887 f002 48891 fullthinc 49488 |
| Copyright terms: Public domain | W3C validator |