MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f00 Structured version   Visualization version   GIF version

Theorem f00 6705
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
Assertion
Ref Expression
f00 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))

Proof of Theorem f00
StepHypRef Expression
1 ffun 6654 . . . . 5 (𝐹:𝐴⟶∅ → Fun 𝐹)
2 frn 6658 . . . . . . 7 (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅)
3 ss0 4352 . . . . . . 7 (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅)
42, 3syl 17 . . . . . 6 (𝐹:𝐴⟶∅ → ran 𝐹 = ∅)
5 dm0rn0 5864 . . . . . 6 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
64, 5sylibr 234 . . . . 5 (𝐹:𝐴⟶∅ → dom 𝐹 = ∅)
7 df-fn 6484 . . . . 5 (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅))
81, 6, 7sylanbrc 583 . . . 4 (𝐹:𝐴⟶∅ → 𝐹 Fn ∅)
9 fn0 6612 . . . 4 (𝐹 Fn ∅ ↔ 𝐹 = ∅)
108, 9sylib 218 . . 3 (𝐹:𝐴⟶∅ → 𝐹 = ∅)
11 fdm 6660 . . . 4 (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴)
1211, 6eqtr3d 2768 . . 3 (𝐹:𝐴⟶∅ → 𝐴 = ∅)
1310, 12jca 511 . 2 (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅))
14 f0 6704 . . 3 ∅:∅⟶∅
15 feq1 6629 . . . 4 (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅))
16 feq2 6630 . . . 4 (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅))
1715, 16sylan9bb 509 . . 3 ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅))
1814, 17mpbiri 258 . 2 ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅)
1913, 18impbii 209 1 (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wss 3902  c0 4283  dom cdm 5616  ran crn 5617  Fun wfun 6475   Fn wfn 6476  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  dom0  9018  cantnff  9564  0wrd0  14447  supcvg  15763  ram0  16934  itgsubstlem  25983  uhgr0vb  29051  lfuhgr1v0e  29233  wlkv0  29629  sate0fv0  35459  prv0  35472  ismgmOLD  37896  mof0  48875  mof0ALT  48877  mofeu  48885  fdomne0  48887  f002  48891  fullthinc  49488
  Copyright terms: Public domain W3C validator