Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version GIF version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6603 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
2 | frn 6607 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
3 | ss0 4332 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
5 | dm0rn0 5834 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
6 | 4, 5 | sylibr 233 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
7 | df-fn 6436 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
8 | 1, 6, 7 | sylanbrc 583 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
9 | fn0 6564 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
11 | fdm 6609 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
12 | 11, 6 | eqtr3d 2780 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
13 | 10, 12 | jca 512 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
14 | f0 6655 | . . 3 ⊢ ∅:∅⟶∅ | |
15 | feq1 6581 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
16 | feq2 6582 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
17 | 15, 16 | sylan9bb 510 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
18 | 14, 17 | mpbiri 257 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
19 | 13, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ∅c0 4256 dom cdm 5589 ran crn 5590 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: dom0 8889 cantnff 9432 0wrd0 14243 supcvg 15568 ram0 16723 itgsubstlem 25212 uhgr0vb 27442 lfuhgr1v0e 27621 wlkv0 28018 sate0fv0 33379 prv0 33392 ismgmOLD 36008 mof0 46165 mof0ALT 46167 mofeu 46175 fdomne0 46177 f002 46181 fullthinc 46327 |
Copyright terms: Public domain | W3C validator |