![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version GIF version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6740 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
2 | frn 6744 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
3 | ss0 4408 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
5 | dm0rn0 5938 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
6 | 4, 5 | sylibr 234 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
7 | df-fn 6566 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
8 | 1, 6, 7 | sylanbrc 583 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
9 | fn0 6700 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
11 | fdm 6746 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
12 | 11, 6 | eqtr3d 2777 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
13 | 10, 12 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
14 | f0 6790 | . . 3 ⊢ ∅:∅⟶∅ | |
15 | feq1 6717 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
16 | feq2 6718 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
17 | 15, 16 | sylan9bb 509 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
18 | 14, 17 | mpbiri 258 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
19 | 13, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ∅c0 4339 dom cdm 5689 ran crn 5690 Fun wfun 6557 Fn wfn 6558 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: dom0 9141 cantnff 9712 0wrd0 14575 supcvg 15889 ram0 17056 itgsubstlem 26104 uhgr0vb 29104 lfuhgr1v0e 29286 wlkv0 29684 sate0fv0 35402 prv0 35415 ismgmOLD 37837 mof0 48668 mof0ALT 48670 mofeu 48678 fdomne0 48680 f002 48684 fullthinc 48846 |
Copyright terms: Public domain | W3C validator |