| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version GIF version | ||
| Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6661 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
| 2 | frn 6665 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
| 3 | ss0 4351 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
| 5 | dm0rn0 5870 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 6 | 4, 5 | sylibr 234 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
| 7 | df-fn 6491 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
| 8 | 1, 6, 7 | sylanbrc 583 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
| 9 | fn0 6619 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
| 11 | fdm 6667 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
| 12 | 11, 6 | eqtr3d 2770 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
| 13 | 10, 12 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| 14 | f0 6711 | . . 3 ⊢ ∅:∅⟶∅ | |
| 15 | feq1 6636 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
| 16 | feq2 6637 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
| 17 | 15, 16 | sylan9bb 509 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
| 18 | 14, 17 | mpbiri 258 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
| 19 | 13, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊆ wss 3898 ∅c0 4282 dom cdm 5621 ran crn 5622 Fun wfun 6482 Fn wfn 6483 ⟶wf 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6490 df-fn 6491 df-f 6492 |
| This theorem is referenced by: dom0 9027 cantnff 9573 0wrd0 14451 supcvg 15767 ram0 16938 itgsubstlem 25985 uhgr0vb 29054 lfuhgr1v0e 29236 wlkv0 29632 sate0fv0 35484 prv0 35497 ismgmOLD 37913 mof0 48965 mof0ALT 48967 mofeu 48975 fdomne0 48977 f002 48981 fullthinc 49578 |
| Copyright terms: Public domain | W3C validator |