| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version GIF version | ||
| Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
| Ref | Expression |
|---|---|
| f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6659 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
| 2 | frn 6663 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
| 3 | ss0 4355 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
| 5 | dm0rn0 5871 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
| 6 | 4, 5 | sylibr 234 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
| 7 | df-fn 6489 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
| 8 | 1, 6, 7 | sylanbrc 583 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
| 9 | fn0 6617 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
| 11 | fdm 6665 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
| 12 | 11, 6 | eqtr3d 2766 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
| 13 | 10, 12 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| 14 | f0 6709 | . . 3 ⊢ ∅:∅⟶∅ | |
| 15 | feq1 6634 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
| 16 | feq2 6635 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
| 17 | 15, 16 | sylan9bb 509 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
| 18 | 14, 17 | mpbiri 258 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
| 19 | 13, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3905 ∅c0 4286 dom cdm 5623 ran crn 5624 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: dom0 9029 cantnff 9589 0wrd0 14465 supcvg 15781 ram0 16952 itgsubstlem 25971 uhgr0vb 29035 lfuhgr1v0e 29217 wlkv0 29613 sate0fv0 35392 prv0 35405 ismgmOLD 37832 mof0 48826 mof0ALT 48828 mofeu 48836 fdomne0 48838 f002 48842 fullthinc 49439 |
| Copyright terms: Public domain | W3C validator |