Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f00 | Structured version Visualization version GIF version |
Description: A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.) |
Ref | Expression |
---|---|
f00 | ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6587 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → Fun 𝐹) | |
2 | frn 6591 | . . . . . . 7 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 ⊆ ∅) | |
3 | ss0 4329 | . . . . . . 7 ⊢ (ran 𝐹 ⊆ ∅ → ran 𝐹 = ∅) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐹:𝐴⟶∅ → ran 𝐹 = ∅) |
5 | dm0rn0 5823 | . . . . . 6 ⊢ (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅) | |
6 | 4, 5 | sylibr 233 | . . . . 5 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = ∅) |
7 | df-fn 6421 | . . . . 5 ⊢ (𝐹 Fn ∅ ↔ (Fun 𝐹 ∧ dom 𝐹 = ∅)) | |
8 | 1, 6, 7 | sylanbrc 582 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → 𝐹 Fn ∅) |
9 | fn0 6548 | . . . 4 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐹 = ∅) |
11 | fdm 6593 | . . . 4 ⊢ (𝐹:𝐴⟶∅ → dom 𝐹 = 𝐴) | |
12 | 11, 6 | eqtr3d 2780 | . . 3 ⊢ (𝐹:𝐴⟶∅ → 𝐴 = ∅) |
13 | 10, 12 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶∅ → (𝐹 = ∅ ∧ 𝐴 = ∅)) |
14 | f0 6639 | . . 3 ⊢ ∅:∅⟶∅ | |
15 | feq1 6565 | . . . 4 ⊢ (𝐹 = ∅ → (𝐹:𝐴⟶∅ ↔ ∅:𝐴⟶∅)) | |
16 | feq2 6566 | . . . 4 ⊢ (𝐴 = ∅ → (∅:𝐴⟶∅ ↔ ∅:∅⟶∅)) | |
17 | 15, 16 | sylan9bb 509 | . . 3 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → (𝐹:𝐴⟶∅ ↔ ∅:∅⟶∅)) |
18 | 14, 17 | mpbiri 257 | . 2 ⊢ ((𝐹 = ∅ ∧ 𝐴 = ∅) → 𝐹:𝐴⟶∅) |
19 | 13, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ∅c0 4253 dom cdm 5580 ran crn 5581 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: cantnff 9362 0wrd0 14171 supcvg 15496 ram0 16651 itgsubstlem 25117 uhgr0vb 27345 lfuhgr1v0e 27524 wlkv0 27920 sate0fv0 33279 prv0 33292 ismgmOLD 35935 mof0 46053 mof0ALT 46055 mofeu 46063 fdomne0 46065 f002 46069 fullthinc 46215 |
Copyright terms: Public domain | W3C validator |