MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrres1 Structured version   Visualization version   GIF version

Theorem umgrres1 26799
Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 26753 since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
umgrres1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑆 ∈ UMGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem umgrres1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6481 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of 6444 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹𝐹)
43ffdmd 6366 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹)
5 rnresi 5783 . . . 4 ran ( I ↾ 𝐹) = 𝐹
6 upgrres1.v . . . . 5 𝑉 = (Vtx‘𝐺)
7 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
8 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
96, 7, 8umgrres1lem 26795 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
105, 9syl5eqssr 3906 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
114, 10fssd 6358 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
12 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
13 opex 5213 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
1412, 13eqeltri 2862 . . 3 𝑆 ∈ V
156, 7, 8, 12upgrres1lem2 26796 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1615eqcomi 2787 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
176, 7, 8, 12upgrres1lem3 26797 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
1817eqcomi 2787 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
1916, 18isumgrs 26584 . . 3 (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2014, 19mp1i 13 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2111, 20mpbird 249 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑆 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wnel 3073  {crab 3092  Vcvv 3415  cdif 3826  𝒫 cpw 4422  {csn 4441  cop 4447   I cid 5311  dom cdm 5407  ran crn 5408  cres 5409  wf 6184  1-1-ontowf1o 6187  cfv 6188  2c2 11495  chash 13505  Vtxcvtx 26484  iEdgciedg 26485  Edgcedg 26535  UMGraphcumgr 26569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506  df-vtx 26486  df-iedg 26487  df-edg 26536  df-uhgr 26546  df-upgr 26570  df-umgr 26571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator