MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrres1 Structured version   Visualization version   GIF version

Theorem umgrres1 27584
Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 27538 since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
umgrres1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑆 ∈ UMGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem umgrres1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6737 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of 6700 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹𝐹)
43ffdmd 6615 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹)
5 rnresi 5972 . . . 4 ran ( I ↾ 𝐹) = 𝐹
6 upgrres1.v . . . . 5 𝑉 = (Vtx‘𝐺)
7 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
8 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
96, 7, 8umgrres1lem 27580 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
105, 9eqsstrrid 3966 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
114, 10fssd 6602 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})
12 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
13 opex 5373 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
1412, 13eqeltri 2835 . . 3 𝑆 ∈ V
156, 7, 8, 12upgrres1lem2 27581 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
1615eqcomi 2747 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
176, 7, 8, 12upgrres1lem3 27582 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
1817eqcomi 2747 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
1916, 18isumgrs 27369 . . 3 (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2014, 19mp1i 13 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}))
2111, 20mpbird 256 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑆 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wnel 3048  {crab 3067  Vcvv 3422  cdif 3880  𝒫 cpw 4530  {csn 4558  cop 4564   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  wf 6414  1-1-ontowf1o 6417  cfv 6418  2c2 11958  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Edgcedg 27320  UMGraphcumgr 27354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-vtx 27271  df-iedg 27272  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-umgr 27356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator