![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrres1 | Structured version Visualization version GIF version |
Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 28793 since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ |
Ref | Expression |
---|---|
umgrres1 | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6871 | . . . . 5 ⊢ ( I ↾ 𝐹):𝐹–1-1-onto→𝐹 | |
2 | f1of 6833 | . . . . 5 ⊢ (( I ↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹⟶𝐹) |
4 | 3 | ffdmd 6748 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹) |
5 | rnresi 6074 | . . . 4 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
6 | upgrres1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
7 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
8 | upgrres1.f | . . . . 5 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
9 | 6, 7, 8 | umgrres1lem 28835 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
10 | 5, 9 | eqsstrrid 4031 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
11 | 4, 10 | fssd 6735 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
12 | upgrres1.s | . . . 4 ⊢ 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ | |
13 | opex 5464 | . . . 4 ⊢ ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V | |
14 | 12, 13 | eqeltri 2828 | . . 3 ⊢ 𝑆 ∈ V |
15 | 6, 7, 8, 12 | upgrres1lem2 28836 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
16 | 15 | eqcomi 2740 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
17 | 6, 7, 8, 12 | upgrres1lem3 28837 | . . . . 5 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
18 | 17 | eqcomi 2740 | . . . 4 ⊢ ( I ↾ 𝐹) = (iEdg‘𝑆) |
19 | 16, 18 | isumgrs 28624 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
20 | 14, 19 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
21 | 11, 20 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∉ wnel 3045 {crab 3431 Vcvv 3473 ∖ cdif 3945 𝒫 cpw 4602 {csn 4628 ⟨cop 4634 I cid 5573 dom cdm 5676 ran crn 5677 ↾ cres 5678 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 2c2 12272 ♯chash 14295 Vtxcvtx 28524 iEdgciedg 28525 Edgcedg 28575 UMGraphcumgr 28609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-hash 14296 df-vtx 28526 df-iedg 28527 df-edg 28576 df-uhgr 28586 df-upgr 28610 df-umgr 28611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |