| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrres1 | Structured version Visualization version GIF version | ||
| Description: A multigraph obtained by removing one vertex and all edges incident with this vertex is a multigraph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 29171 since the domains of the edge functions may not be compatible. (Contributed by AV, 27-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| umgrres1 | ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6820 | . . . . 5 ⊢ ( I ↾ 𝐹):𝐹–1-1-onto→𝐹 | |
| 2 | f1of 6782 | . . . . 5 ⊢ (( I ↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹⟶𝐹) | |
| 3 | 1, 2 | mp1i 13 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹⟶𝐹) |
| 4 | 3 | ffdmd 6700 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶𝐹) |
| 5 | rnresi 6035 | . . . 4 ⊢ ran ( I ↾ 𝐹) = 𝐹 | |
| 6 | upgrres1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 8 | upgrres1.f | . . . . 5 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 9 | 6, 7, 8 | umgrres1lem 29213 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 10 | 5, 9 | eqsstrrid 3983 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 11 | 4, 10 | fssd 6687 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2}) |
| 12 | upgrres1.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 13 | opex 5419 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
| 14 | 12, 13 | eqeltri 2824 | . . 3 ⊢ 𝑆 ∈ V |
| 15 | 6, 7, 8, 12 | upgrres1lem2 29214 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 16 | 15 | eqcomi 2738 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 17 | 6, 7, 8, 12 | upgrres1lem3 29215 | . . . . 5 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
| 18 | 17 | eqcomi 2738 | . . . 4 ⊢ ( I ↾ 𝐹) = (iEdg‘𝑆) |
| 19 | 16, 18 | isumgrs 28999 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 20 | 14, 19 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ UMGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)⟶{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (♯‘𝑝) = 2})) |
| 21 | 11, 20 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ UMGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3402 Vcvv 3444 ∖ cdif 3908 𝒫 cpw 4559 {csn 4585 〈cop 4591 I cid 5525 dom cdm 5631 ran crn 5632 ↾ cres 5633 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 2c2 12217 ♯chash 14271 Vtxcvtx 28899 iEdgciedg 28900 Edgcedg 28950 UMGraphcumgr 28984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-vtx 28901 df-iedg 28902 df-edg 28951 df-uhgr 28961 df-upgr 28985 df-umgr 28986 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |