Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfled Structured version   Visualization version   GIF version

Theorem issmfled 43330
 Description: A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfled.a 𝑎𝜑
issmfled.s (𝜑𝑆 ∈ SAlg)
issmfled.d (𝜑𝐷 𝑆)
issmfled.f (𝜑𝐹:𝐷⟶ℝ)
issmfled.6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfled (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑎)   𝑆(𝑥)

Proof of Theorem issmfled
StepHypRef Expression
1 issmfled.f . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
21fdmd 6504 . . . 4 (𝜑 → dom 𝐹 = 𝐷)
3 issmfled.d . . . 4 (𝜑𝐷 𝑆)
42, 3eqsstrd 3980 . . 3 (𝜑 → dom 𝐹 𝑆)
51ffdmd 6518 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
6 issmfled.a . . . 4 𝑎𝜑
7 issmfled.6 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
82rabeqdv 3460 . . . . . . . 8 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
92oveq2d 7156 . . . . . . . 8 (𝜑 → (𝑆t dom 𝐹) = (𝑆t 𝐷))
108, 9eleq12d 2908 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
1110adantr 484 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
127, 11mpbird 260 . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹))
1312ex 416 . . . 4 (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹)))
146, 13ralrimi 3205 . . 3 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹))
154, 5, 143jca 1125 . 2 (𝜑 → (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹)))
16 issmfled.s . . 3 (𝜑𝑆 ∈ SAlg)
17 eqid 2822 . . 3 dom 𝐹 = dom 𝐹
1816, 17issmfle 43318 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹))))
1915, 18mpbird 260 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  Ⅎwnf 1785   ∈ wcel 2114  ∀wral 3130  {crab 3134   ⊆ wss 3908  ∪ cuni 4813   class class class wbr 5042  dom cdm 5532  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140  ℝcr 10525   ≤ cle 10665   ↾t crest 16685  SAlgcsalg 42889  SMblFncsmblfn 43273 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fl 13157  df-rest 16687  df-salg 42890  df-smblfn 43274 This theorem is referenced by:  smflim  43349  issmfle2d  43379
 Copyright terms: Public domain W3C validator