Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfled Structured version   Visualization version   GIF version

Theorem issmfled 46742
Description: A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfled.a 𝑎𝜑
issmfled.s (𝜑𝑆 ∈ SAlg)
issmfled.d (𝜑𝐷 𝑆)
issmfled.f (𝜑𝐹:𝐷⟶ℝ)
issmfled.6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfled (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑎)   𝑆(𝑥)

Proof of Theorem issmfled
StepHypRef Expression
1 issmfled.f . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
21fdmd 6662 . . . 4 (𝜑 → dom 𝐹 = 𝐷)
3 issmfled.d . . . 4 (𝜑𝐷 𝑆)
42, 3eqsstrd 3970 . . 3 (𝜑 → dom 𝐹 𝑆)
51ffdmd 6682 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
6 issmfled.a . . . 4 𝑎𝜑
7 issmfled.6 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
82rabeqdv 3410 . . . . . . . 8 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
92oveq2d 7365 . . . . . . . 8 (𝜑 → (𝑆t dom 𝐹) = (𝑆t 𝐷))
108, 9eleq12d 2822 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
1110adantr 480 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷)))
127, 11mpbird 257 . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹))
1312ex 412 . . . 4 (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹)))
146, 13ralrimi 3227 . . 3 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹))
154, 5, 143jca 1128 . 2 (𝜑 → (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹)))
16 issmfled.s . . 3 (𝜑𝑆 ∈ SAlg)
17 eqid 2729 . . 3 dom 𝐹 = dom 𝐹
1816, 17issmfle 46730 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t dom 𝐹))))
1915, 18mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1783  wcel 2109  wral 3044  {crab 3394  wss 3903   cuni 4858   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cr 11008  cle 11150  t crest 17324  SAlgcsalg 46293  SMblFncsmblfn 46680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ioo 13252  df-ico 13254  df-fl 13696  df-rest 17326  df-salg 46294  df-smblfn 46681
This theorem is referenced by:  smflim  46762  issmfle2d  46794
  Copyright terms: Public domain W3C validator