MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2e Structured version   Visualization version   GIF version

Theorem umgr2v2e 29558
Description: A multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2e (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)

Proof of Theorem umgr2v2e
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 c0ex 11253 . . . . . . 7 0 ∈ V
2 1ex 11255 . . . . . . 7 1 ∈ V
31, 2pm3.2i 470 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 prex 5443 . . . . . . 7 {𝐴, 𝐵} ∈ V
54, 4pm3.2i 470 . . . . . 6 ({𝐴, 𝐵} ∈ V ∧ {𝐴, 𝐵} ∈ V)
6 0ne1 12335 . . . . . . 7 0 ≠ 1
76a1i 11 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 0 ≠ 1)
8 fprg 7175 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ ({𝐴, 𝐵} ∈ V ∧ {𝐴, 𝐵} ∈ V) ∧ 0 ≠ 1) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{{𝐴, 𝐵}, {𝐴, 𝐵}})
93, 5, 7, 8mp3an12i 1464 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{{𝐴, 𝐵}, {𝐴, 𝐵}})
10 dfsn2 4644 . . . . . 6 {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}}
11 fveqeq2 6916 . . . . . . . 8 (𝑒 = {𝐴, 𝐵} → ((♯‘𝑒) = 2 ↔ (♯‘{𝐴, 𝐵}) = 2))
12 prelpwi 5458 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
13123adant1 1129 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
14 umgr2v2evtx.g . . . . . . . . . . . . 13 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
1514umgr2v2evtx 29554 . . . . . . . . . . . 12 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
16153ad2ant1 1132 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
1716pweqd 4622 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
1813, 17eleqtrrd 2842 . . . . . . . . 9 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 (Vtx‘𝐺))
1918adantr 480 . . . . . . . 8 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 (Vtx‘𝐺))
20 hashprg 14431 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
2120biimpd 229 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
22213adant1 1129 . . . . . . . . 9 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
2322imp 406 . . . . . . . 8 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
2411, 19, 23elrabd 3697 . . . . . . 7 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2524snssd 4814 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {{𝐴, 𝐵}} ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2610, 25eqsstrrid 4045 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {{𝐴, 𝐵}, {𝐴, 𝐵}} ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
279, 26fssd 6754 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2827ffdmd 6767 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2914umgr2v2eiedg 29556 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3029adantr 480 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3130dmeqd 5919 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3230, 31feq12d 6725 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2} ↔ {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
3328, 32mpbird 257 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
34 opex 5475 . . . 4 𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩ ∈ V
3514, 34eqeltri 2835 . . 3 𝐺 ∈ V
36 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
37 eqid 2735 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3836, 37isumgrs 29128 . . 3 (𝐺 ∈ V → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
3935, 38mp1i 13 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
4033, 39mpbird 257 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  Vcvv 3478  𝒫 cpw 4605  {csn 4631  {cpr 4633  cop 4637  dom cdm 5689  wf 6559  cfv 6563  0cc0 11153  1c1 11154  2c2 12319  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  UMGraphcumgr 29113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-vtx 29030  df-iedg 29031  df-umgr 29115
This theorem is referenced by:  umgr2v2enb1  29559  umgr2v2evd2  29560
  Copyright terms: Public domain W3C validator