MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2e Structured version   Visualization version   GIF version

Theorem umgr2v2e 29561
Description: A multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2e (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)

Proof of Theorem umgr2v2e
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 c0ex 11284 . . . . . . 7 0 ∈ V
2 1ex 11286 . . . . . . 7 1 ∈ V
31, 2pm3.2i 470 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 prex 5452 . . . . . . 7 {𝐴, 𝐵} ∈ V
54, 4pm3.2i 470 . . . . . 6 ({𝐴, 𝐵} ∈ V ∧ {𝐴, 𝐵} ∈ V)
6 0ne1 12364 . . . . . . 7 0 ≠ 1
76a1i 11 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 0 ≠ 1)
8 fprg 7189 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ ({𝐴, 𝐵} ∈ V ∧ {𝐴, 𝐵} ∈ V) ∧ 0 ≠ 1) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{{𝐴, 𝐵}, {𝐴, 𝐵}})
93, 5, 7, 8mp3an12i 1465 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{{𝐴, 𝐵}, {𝐴, 𝐵}})
10 dfsn2 4661 . . . . . 6 {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}}
11 fveqeq2 6929 . . . . . . . 8 (𝑒 = {𝐴, 𝐵} → ((♯‘𝑒) = 2 ↔ (♯‘{𝐴, 𝐵}) = 2))
12 prelpwi 5467 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
13123adant1 1130 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
14 umgr2v2evtx.g . . . . . . . . . . . . 13 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
1514umgr2v2evtx 29557 . . . . . . . . . . . 12 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
16153ad2ant1 1133 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
1716pweqd 4639 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
1813, 17eleqtrrd 2847 . . . . . . . . 9 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 (Vtx‘𝐺))
1918adantr 480 . . . . . . . 8 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 (Vtx‘𝐺))
20 hashprg 14444 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
2120biimpd 229 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
22213adant1 1130 . . . . . . . . 9 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
2322imp 406 . . . . . . . 8 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
2411, 19, 23elrabd 3710 . . . . . . 7 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2524snssd 4834 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {{𝐴, 𝐵}} ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2610, 25eqsstrrid 4058 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {{𝐴, 𝐵}, {𝐴, 𝐵}} ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
279, 26fssd 6764 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2827ffdmd 6778 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2914umgr2v2eiedg 29559 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3029adantr 480 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3130dmeqd 5930 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3230, 31feq12d 6735 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2} ↔ {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
3328, 32mpbird 257 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
34 opex 5484 . . . 4 𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩ ∈ V
3514, 34eqeltri 2840 . . 3 𝐺 ∈ V
36 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
37 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3836, 37isumgrs 29131 . . 3 (𝐺 ∈ V → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
3935, 38mp1i 13 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
4033, 39mpbird 257 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  𝒫 cpw 4622  {csn 4648  {cpr 4650  cop 4654  dom cdm 5700  wf 6569  cfv 6573  0cc0 11184  1c1 11185  2c2 12348  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  UMGraphcumgr 29116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-vtx 29033  df-iedg 29034  df-umgr 29118
This theorem is referenced by:  umgr2v2enb1  29562  umgr2v2evd2  29563
  Copyright terms: Public domain W3C validator