MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr2v2e Structured version   Visualization version   GIF version

Theorem umgr2v2e 29049
Description: A multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020.)
Hypothesis
Ref Expression
umgr2v2evtx.g 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
Assertion
Ref Expression
umgr2v2e (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)

Proof of Theorem umgr2v2e
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 c0ex 11212 . . . . . . 7 0 ∈ V
2 1ex 11214 . . . . . . 7 1 ∈ V
31, 2pm3.2i 469 . . . . . 6 (0 ∈ V ∧ 1 ∈ V)
4 prex 5431 . . . . . . 7 {𝐴, 𝐵} ∈ V
54, 4pm3.2i 469 . . . . . 6 ({𝐴, 𝐵} ∈ V ∧ {𝐴, 𝐵} ∈ V)
6 0ne1 12287 . . . . . . 7 0 ≠ 1
76a1i 11 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 0 ≠ 1)
8 fprg 7154 . . . . . 6 (((0 ∈ V ∧ 1 ∈ V) ∧ ({𝐴, 𝐵} ∈ V ∧ {𝐴, 𝐵} ∈ V) ∧ 0 ≠ 1) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{{𝐴, 𝐵}, {𝐴, 𝐵}})
93, 5, 7, 8mp3an12i 1463 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{{𝐴, 𝐵}, {𝐴, 𝐵}})
10 dfsn2 4640 . . . . . 6 {{𝐴, 𝐵}} = {{𝐴, 𝐵}, {𝐴, 𝐵}}
11 fveqeq2 6899 . . . . . . . 8 (𝑒 = {𝐴, 𝐵} → ((♯‘𝑒) = 2 ↔ (♯‘{𝐴, 𝐵}) = 2))
12 prelpwi 5446 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
13123adant1 1128 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 𝑉)
14 umgr2v2evtx.g . . . . . . . . . . . . 13 𝐺 = ⟨𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩
1514umgr2v2evtx 29045 . . . . . . . . . . . 12 (𝑉𝑊 → (Vtx‘𝐺) = 𝑉)
16153ad2ant1 1131 . . . . . . . . . . 11 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (Vtx‘𝐺) = 𝑉)
1716pweqd 4618 . . . . . . . . . 10 ((𝑉𝑊𝐴𝑉𝐵𝑉) → 𝒫 (Vtx‘𝐺) = 𝒫 𝑉)
1813, 17eleqtrrd 2834 . . . . . . . . 9 ((𝑉𝑊𝐴𝑉𝐵𝑉) → {𝐴, 𝐵} ∈ 𝒫 (Vtx‘𝐺))
1918adantr 479 . . . . . . . 8 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ 𝒫 (Vtx‘𝐺))
20 hashprg 14359 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
2120biimpd 228 . . . . . . . . . 10 ((𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
22213adant1 1128 . . . . . . . . 9 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (𝐴𝐵 → (♯‘{𝐴, 𝐵}) = 2))
2322imp 405 . . . . . . . 8 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘{𝐴, 𝐵}) = 2)
2411, 19, 23elrabd 3684 . . . . . . 7 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {𝐴, 𝐵} ∈ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2524snssd 4811 . . . . . 6 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {{𝐴, 𝐵}} ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2610, 25eqsstrrid 4030 . . . . 5 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {{𝐴, 𝐵}, {𝐴, 𝐵}} ⊆ {𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
279, 26fssd 6734 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:{0, 1}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2827ffdmd 6747 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
2914umgr2v2eiedg 29047 . . . . 5 ((𝑉𝑊𝐴𝑉𝐵𝑉) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3029adantr 479 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (iEdg‘𝐺) = {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3130dmeqd 5904 . . . 4 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → dom (iEdg‘𝐺) = dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩})
3230, 31feq12d 6704 . . 3 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2} ↔ {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}:dom {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
3328, 32mpbird 256 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2})
34 opex 5463 . . . 4 𝑉, {⟨0, {𝐴, 𝐵}⟩, ⟨1, {𝐴, 𝐵}⟩}⟩ ∈ V
3514, 34eqeltri 2827 . . 3 𝐺 ∈ V
36 eqid 2730 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
37 eqid 2730 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3836, 37isumgrs 28623 . . 3 (𝐺 ∈ V → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
3935, 38mp1i 13 . 2 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐺 ∈ UMGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑒 ∈ 𝒫 (Vtx‘𝐺) ∣ (♯‘𝑒) = 2}))
4033, 39mpbird 256 1 (((𝑉𝑊𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → 𝐺 ∈ UMGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  {crab 3430  Vcvv 3472  𝒫 cpw 4601  {csn 4627  {cpr 4629  cop 4633  dom cdm 5675  wf 6538  cfv 6542  0cc0 11112  1c1 11113  2c2 12271  chash 14294  Vtxcvtx 28523  iEdgciedg 28524  UMGraphcumgr 28608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-vtx 28525  df-iedg 28526  df-umgr 28610
This theorem is referenced by:  umgr2v2enb1  29050  umgr2v2evd2  29051
  Copyright terms: Public domain W3C validator