![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfd | Structured version Visualization version GIF version |
Description: A sufficient condition for "πΉ being a real-valued measurable function w.r.t. to the sigma-algebra π". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfd.a | β’ β²ππ |
issmfd.s | β’ (π β π β SAlg) |
issmfd.d | β’ (π β π· β βͺ π) |
issmfd.f | β’ (π β πΉ:π·βΆβ) |
issmfd.p | β’ ((π β§ π β β) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) |
Ref | Expression |
---|---|
issmfd | β’ (π β πΉ β (SMblFnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfd.f | . . . . 5 β’ (π β πΉ:π·βΆβ) | |
2 | 1 | fdmd 6680 | . . . 4 β’ (π β dom πΉ = π·) |
3 | issmfd.d | . . . 4 β’ (π β π· β βͺ π) | |
4 | 2, 3 | eqsstrd 3983 | . . 3 β’ (π β dom πΉ β βͺ π) |
5 | 1 | ffdmd 6700 | . . 3 β’ (π β πΉ:dom πΉβΆβ) |
6 | issmfd.a | . . . 4 β’ β²ππ | |
7 | issmfd.p | . . . . . 6 β’ ((π β§ π β β) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·)) | |
8 | 2 | rabeqdv 3421 | . . . . . . . 8 β’ (π β {π₯ β dom πΉ β£ (πΉβπ₯) < π} = {π₯ β π· β£ (πΉβπ₯) < π}) |
9 | 2 | oveq2d 7374 | . . . . . . . 8 β’ (π β (π βΎt dom πΉ) = (π βΎt π·)) |
10 | 8, 9 | eleq12d 2828 | . . . . . . 7 β’ (π β ({π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
11 | 10 | adantr 482 | . . . . . 6 β’ ((π β§ π β β) β ({π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ) β {π₯ β π· β£ (πΉβπ₯) < π} β (π βΎt π·))) |
12 | 7, 11 | mpbird 257 | . . . . 5 β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
13 | 12 | ex 414 | . . . 4 β’ (π β (π β β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ))) |
14 | 6, 13 | ralrimi 3239 | . . 3 β’ (π β βπ β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
15 | 4, 5, 14 | 3jca 1129 | . 2 β’ (π β (dom πΉ β βͺ π β§ πΉ:dom πΉβΆβ β§ βπ β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ))) |
16 | issmfd.s | . . 3 β’ (π β π β SAlg) | |
17 | eqid 2733 | . . 3 β’ dom πΉ = dom πΉ | |
18 | 16, 17 | issmf 45055 | . 2 β’ (π β (πΉ β (SMblFnβπ) β (dom πΉ β βͺ π β§ πΉ:dom πΉβΆβ β§ βπ β β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)))) |
19 | 15, 18 | mpbird 257 | 1 β’ (π β πΉ β (SMblFnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 β²wnf 1786 β wcel 2107 βwral 3061 {crab 3406 β wss 3911 βͺ cuni 4866 class class class wbr 5106 dom cdm 5634 βΆwf 6493 βcfv 6497 (class class class)co 7358 βcr 11055 < clt 11194 βΎt crest 17307 SAlgcsalg 44635 SMblFncsmblfn 45022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-pre-lttri 11130 ax-pre-lttrn 11131 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-er 8651 df-pm 8771 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-ioo 13274 df-ico 13276 df-smblfn 45023 |
This theorem is referenced by: sssmf 45065 mbfresmf 45066 cnfsmf 45067 incsmf 45069 smfsssmf 45070 smfres 45117 smfco 45129 |
Copyright terms: Public domain | W3C validator |