Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfd | Structured version Visualization version GIF version |
Description: A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfd.a | ⊢ Ⅎ𝑎𝜑 |
issmfd.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfd.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
issmfd.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
issmfd.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
Ref | Expression |
---|---|
issmfd | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfd.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
2 | 1 | fdmd 6595 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | issmfd.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
4 | 2, 3 | eqsstrd 3955 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
5 | 1 | ffdmd 6615 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
6 | issmfd.a | . . . 4 ⊢ Ⅎ𝑎𝜑 | |
7 | issmfd.p | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) | |
8 | 2 | rabeqdv 3409 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
9 | 2 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾t dom 𝐹) = (𝑆 ↾t 𝐷)) |
10 | 8, 9 | eleq12d 2833 | . . . . . . 7 ⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
12 | 7, 11 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
13 | 12 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
14 | 6, 13 | ralrimi 3139 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
15 | 4, 5, 14 | 3jca 1126 | . 2 ⊢ (𝜑 → (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
16 | issmfd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
17 | eqid 2738 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
18 | 16, 17 | issmf 44151 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)))) |
19 | 15, 18 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 < clt 10940 ↾t crest 17048 SAlgcsalg 43739 SMblFncsmblfn 44123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 df-ico 13014 df-smblfn 44124 |
This theorem is referenced by: sssmf 44161 mbfresmf 44162 cnfsmf 44163 incsmf 44165 smfsssmf 44166 smfres 44211 smfco 44223 |
Copyright terms: Public domain | W3C validator |