Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfd Structured version   Visualization version   GIF version

Theorem issmfd 46712
Description: A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmfd.a 𝑎𝜑
issmfd.s (𝜑𝑆 ∈ SAlg)
issmfd.d (𝜑𝐷 𝑆)
issmfd.f (𝜑𝐹:𝐷⟶ℝ)
issmfd.p ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfd (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐷   𝐹,𝑎,𝑥   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑎)   𝑆(𝑥)

Proof of Theorem issmfd
StepHypRef Expression
1 issmfd.f . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
21fdmd 6715 . . . 4 (𝜑 → dom 𝐹 = 𝐷)
3 issmfd.d . . . 4 (𝜑𝐷 𝑆)
42, 3eqsstrd 3993 . . 3 (𝜑 → dom 𝐹 𝑆)
51ffdmd 6735 . . 3 (𝜑𝐹:dom 𝐹⟶ℝ)
6 issmfd.a . . . 4 𝑎𝜑
7 issmfd.p . . . . . 6 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
82rabeqdv 3431 . . . . . . . 8 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎})
92oveq2d 7419 . . . . . . . 8 (𝜑 → (𝑆t dom 𝐹) = (𝑆t 𝐷))
108, 9eleq12d 2828 . . . . . . 7 (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
1110adantr 480 . . . . . 6 ((𝜑𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
127, 11mpbird 257 . . . . 5 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
1312ex 412 . . . 4 (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹)))
146, 13ralrimi 3240 . . 3 (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
154, 5, 143jca 1128 . 2 (𝜑 → (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹)))
16 issmfd.s . . 3 (𝜑𝑆 ∈ SAlg)
17 eqid 2735 . . 3 dom 𝐹 = dom 𝐹
1816, 17issmf 46705 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 𝑆𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))))
1915, 18mpbird 257 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1783  wcel 2108  wral 3051  {crab 3415  wss 3926   cuni 4883   class class class wbr 5119  dom cdm 5654  wf 6526  cfv 6530  (class class class)co 7403  cr 11126   < clt 11267  t crest 17432  SAlgcsalg 46285  SMblFncsmblfn 46672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-er 8717  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-ioo 13364  df-ico 13366  df-smblfn 46673
This theorem is referenced by:  sssmf  46715  mbfresmf  46716  cnfsmf  46717  incsmf  46719  smfsssmf  46720  smfres  46767  smfco  46779
  Copyright terms: Public domain W3C validator