Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfd | Structured version Visualization version GIF version |
Description: A sufficient condition for "𝐹 being a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmfd.a | ⊢ Ⅎ𝑎𝜑 |
issmfd.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfd.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
issmfd.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
issmfd.p | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
Ref | Expression |
---|---|
issmfd | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfd.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
2 | 1 | fdmd 6667 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐷) |
3 | issmfd.d | . . . 4 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
4 | 2, 3 | eqsstrd 3974 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
5 | 1 | ffdmd 6687 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
6 | issmfd.a | . . . 4 ⊢ Ⅎ𝑎𝜑 | |
7 | issmfd.p | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) | |
8 | 2 | rabeqdv 3419 | . . . . . . . 8 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎}) |
9 | 2 | oveq2d 7358 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ↾t dom 𝐹) = (𝑆 ↾t 𝐷)) |
10 | 8, 9 | eleq12d 2832 | . . . . . . 7 ⊢ (𝜑 → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
11 | 10 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
12 | 7, 11 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
13 | 12 | ex 414 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ℝ → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
14 | 6, 13 | ralrimi 3237 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
15 | 4, 5, 14 | 3jca 1128 | . 2 ⊢ (𝜑 → (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹))) |
16 | issmfd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
17 | eqid 2737 | . . 3 ⊢ dom 𝐹 = dom 𝐹 | |
18 | 16, 17 | issmf 44653 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (dom 𝐹 ⊆ ∪ 𝑆 ∧ 𝐹:dom 𝐹⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)))) |
19 | 15, 18 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3062 {crab 3404 ⊆ wss 3902 ∪ cuni 4857 class class class wbr 5097 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ℝcr 10976 < clt 11115 ↾t crest 17229 SAlgcsalg 44235 SMblFncsmblfn 44620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-pre-lttri 11051 ax-pre-lttrn 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-1st 7904 df-2nd 7905 df-er 8574 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-ioo 13189 df-ico 13191 df-smblfn 44621 |
This theorem is referenced by: sssmf 44663 mbfresmf 44664 cnfsmf 44665 incsmf 44667 smfsssmf 44668 smfres 44715 smfco 44727 |
Copyright terms: Public domain | W3C validator |