| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr1e | Structured version Visualization version GIF version | ||
| Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 29178. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
| Ref | Expression |
|---|---|
| upgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| upgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| upgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| upgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) |
| Ref | Expression |
|---|---|
| upgr1e | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1e.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | prex 5395 | . . . . . . . 8 ⊢ {𝐵, 𝐶} ∈ V | |
| 3 | 2 | snid 4629 | . . . . . . 7 ⊢ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}} |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) |
| 5 | 1, 4 | fsnd 6846 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}⟶{{𝐵, 𝐶}}) |
| 6 | upgr1e.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | upgr1e.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 8 | 6, 7 | prssd 4789 | . . . . . . . 8 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝑉) |
| 9 | upgr1e.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | 8, 9 | sseqtrdi 3990 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
| 11 | 2 | elpw 4570 | . . . . . . 7 ⊢ ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
| 12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺)) |
| 13 | 12, 6 | upgr1elem 29046 | . . . . 5 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 14 | 5, 13 | fssd 6708 | . . . 4 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 15 | 14 | ffdmd 6721 | . . 3 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 16 | upgr1e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) | |
| 17 | 16 | dmeqd 5872 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝐵, 𝐶}〉}) |
| 18 | 16, 17 | feq12d 6679 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 19 | 15, 18 | mpbird 257 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
| 20 | 9 | 1vgrex 28936 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
| 21 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 22 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 23 | 21, 22 | isupgr 29018 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 24 | 6, 20, 23 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
| 25 | 19, 24 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {cpr 4594 〈cop 4598 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 ≤ cle 11216 2c2 12248 ♯chash 14302 Vtxcvtx 28930 iEdgciedg 28931 UPGraphcupgr 29014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-upgr 29016 |
| This theorem is referenced by: upgr1eop 29049 upgr1eopALT 29051 |
| Copyright terms: Public domain | W3C validator |