![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr1e | Structured version Visualization version GIF version |
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 29279. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.) |
Ref | Expression |
---|---|
upgr1e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgr1e.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
upgr1e.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
upgr1e.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
upgr1e.e | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) |
Ref | Expression |
---|---|
upgr1e | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgr1e.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | prex 5452 | . . . . . . . 8 ⊢ {𝐵, 𝐶} ∈ V | |
3 | 2 | snid 4684 | . . . . . . 7 ⊢ {𝐵, 𝐶} ∈ {{𝐵, 𝐶}} |
4 | 3 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}) |
5 | 1, 4 | fsnd 6905 | . . . . 5 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}⟶{{𝐵, 𝐶}}) |
6 | upgr1e.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | upgr1e.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
8 | 6, 7 | prssd 4847 | . . . . . . . 8 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝑉) |
9 | upgr1e.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | 8, 9 | sseqtrdi 4059 | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
11 | 2 | elpw 4626 | . . . . . . 7 ⊢ ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺)) |
12 | 10, 11 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺)) |
13 | 12, 6 | upgr1elem 29147 | . . . . 5 ⊢ (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
14 | 5, 13 | fssd 6764 | . . . 4 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
15 | 14 | ffdmd 6778 | . . 3 ⊢ (𝜑 → {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
16 | upgr1e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, {𝐵, 𝐶}〉}) | |
17 | 16 | dmeqd 5930 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝐺) = dom {〈𝐴, {𝐵, 𝐶}〉}) |
18 | 16, 17 | feq12d 6735 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {〈𝐴, {𝐵, 𝐶}〉}:dom {〈𝐴, {𝐵, 𝐶}〉}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
19 | 15, 18 | mpbird 257 | . 2 ⊢ (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}) |
20 | 9 | 1vgrex 29037 | . . 3 ⊢ (𝐵 ∈ 𝑉 → 𝐺 ∈ V) |
21 | eqid 2740 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
22 | eqid 2740 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
23 | 21, 22 | isupgr 29119 | . . 3 ⊢ (𝐺 ∈ V → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
24 | 6, 20, 23 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})) |
25 | 19, 24 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 {cpr 4650 〈cop 4654 class class class wbr 5166 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 ≤ cle 11325 2c2 12348 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 UPGraphcupgr 29115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-upgr 29117 |
This theorem is referenced by: upgr1eop 29150 upgr1eopALT 29152 |
Copyright terms: Public domain | W3C validator |