MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1e Structured version   Visualization version   GIF version

Theorem upgr1e 26892
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e 27020. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 16-Oct-2020.) (Revised by AV, 21-Mar-2021.) (Proof shortened by AV, 17-Apr-2021.)
Hypotheses
Ref Expression
upgr1e.v 𝑉 = (Vtx‘𝐺)
upgr1e.a (𝜑𝐴𝑋)
upgr1e.b (𝜑𝐵𝑉)
upgr1e.c (𝜑𝐶𝑉)
upgr1e.e (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
Assertion
Ref Expression
upgr1e (𝜑𝐺 ∈ UPGraph)

Proof of Theorem upgr1e
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 upgr1e.a . . . . . 6 (𝜑𝐴𝑋)
2 prex 5325 . . . . . . . 8 {𝐵, 𝐶} ∈ V
32snid 4595 . . . . . . 7 {𝐵, 𝐶} ∈ {{𝐵, 𝐶}}
43a1i 11 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ {{𝐵, 𝐶}})
51, 4fsnd 6652 . . . . 5 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{{𝐵, 𝐶}})
6 upgr1e.b . . . . . . . . 9 (𝜑𝐵𝑉)
7 upgr1e.c . . . . . . . . 9 (𝜑𝐶𝑉)
86, 7prssd 4749 . . . . . . . 8 (𝜑 → {𝐵, 𝐶} ⊆ 𝑉)
9 upgr1e.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
108, 9sseqtrdi 4017 . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
112elpw 4546 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝐵, 𝐶} ⊆ (Vtx‘𝐺))
1210, 11sylibr 236 . . . . . 6 (𝜑 → {𝐵, 𝐶} ∈ 𝒫 (Vtx‘𝐺))
1312, 6upgr1elem 26891 . . . . 5 (𝜑 → {{𝐵, 𝐶}} ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
145, 13fssd 6523 . . . 4 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:{𝐴}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
1514ffdmd 6532 . . 3 (𝜑 → {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
16 upgr1e.e . . . 4 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝐵, 𝐶}⟩})
1716dmeqd 5769 . . . 4 (𝜑 → dom (iEdg‘𝐺) = dom {⟨𝐴, {𝐵, 𝐶}⟩})
1816, 17feq12d 6497 . . 3 (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2} ↔ {⟨𝐴, {𝐵, 𝐶}⟩}:dom {⟨𝐴, {𝐵, 𝐶}⟩}⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
1915, 18mpbird 259 . 2 (𝜑 → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2})
2091vgrex 26781 . . 3 (𝐵𝑉𝐺 ∈ V)
21 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
22 eqid 2821 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2321, 22isupgr 26863 . . 3 (𝐺 ∈ V → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
246, 20, 233syl 18 . 2 (𝜑 → (𝐺 ∈ UPGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}))
2519, 24mpbird 259 1 (𝜑𝐺 ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3495  cdif 3933  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5059  dom cdm 5550  wf 6346  cfv 6350  cle 10670  2c2 11686  chash 13684  Vtxcvtx 26775  iEdgciedg 26776  UPGraphcupgr 26859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685  df-upgr 26861
This theorem is referenced by:  upgr1eop  26894  upgr1eopALT  26896
  Copyright terms: Public domain W3C validator