Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. 2
β’
β²ππ |
2 | | cnfsmf.1 |
. . 3
β’ (π β π½ β Top) |
3 | | cnfsmf.s |
. . 3
β’ π = (SalGenβπ½) |
4 | 2, 3 | salgencld 45051 |
. 2
β’ (π β π β SAlg) |
5 | | cnfsmf.f |
. . . . 5
β’ (π β πΉ β ((π½ βΎt dom πΉ) Cn πΎ)) |
6 | | eqid 2732 |
. . . . . 6
β’ βͺ (π½
βΎt dom πΉ)
= βͺ (π½ βΎt dom πΉ) |
7 | | eqid 2732 |
. . . . . 6
β’ βͺ πΎ =
βͺ πΎ |
8 | 6, 7 | cnf 22741 |
. . . . 5
β’ (πΉ β ((π½ βΎt dom πΉ) Cn πΎ) β πΉ:βͺ (π½ βΎt dom πΉ)βΆβͺ πΎ) |
9 | 5, 8 | syl 17 |
. . . 4
β’ (π β πΉ:βͺ (π½ βΎt dom πΉ)βΆβͺ πΎ) |
10 | 9 | fdmd 6725 |
. . 3
β’ (π β dom πΉ = βͺ (π½ βΎt dom πΉ)) |
11 | | ovex 7438 |
. . . . . . . 8
β’ (π½ βΎt dom πΉ) β V |
12 | 11 | uniex 7727 |
. . . . . . 7
β’ βͺ (π½
βΎt dom πΉ)
β V |
13 | 12 | a1i 11 |
. . . . . 6
β’ (π β βͺ (π½
βΎt dom πΉ)
β V) |
14 | 10, 13 | eqeltrd 2833 |
. . . . 5
β’ (π β dom πΉ β V) |
15 | 2, 14 | unirestss 43798 |
. . . 4
β’ (π β βͺ (π½
βΎt dom πΉ)
β βͺ π½) |
16 | 3 | sssalgen 45037 |
. . . . . 6
β’ (π½ β Top β π½ β π) |
17 | 2, 16 | syl 17 |
. . . . 5
β’ (π β π½ β π) |
18 | 17 | unissd 4917 |
. . . 4
β’ (π β βͺ π½
β βͺ π) |
19 | 15, 18 | sstrd 3991 |
. . 3
β’ (π β βͺ (π½
βΎt dom πΉ)
β βͺ π) |
20 | 10, 19 | eqsstrd 4019 |
. 2
β’ (π β dom πΉ β βͺ π) |
21 | | uniretop 24270 |
. . . . . . 7
β’ β =
βͺ (topGenβran (,)) |
22 | | cnfsmf.k |
. . . . . . . 8
β’ πΎ = (topGenβran
(,)) |
23 | 22 | unieqi 4920 |
. . . . . . 7
β’ βͺ πΎ =
βͺ (topGenβran (,)) |
24 | 21, 23 | eqtr4i 2763 |
. . . . . 6
β’ β =
βͺ πΎ |
25 | 24 | a1i 11 |
. . . . 5
β’ (π β β = βͺ πΎ) |
26 | 25 | feq3d 6701 |
. . . 4
β’ (π β (πΉ:βͺ (π½ βΎt dom πΉ)βΆβ β πΉ:βͺ
(π½ βΎt dom
πΉ)βΆβͺ πΎ)) |
27 | 9, 26 | mpbird 256 |
. . 3
β’ (π β πΉ:βͺ (π½ βΎt dom πΉ)βΆβ) |
28 | 27 | ffdmd 6745 |
. 2
β’ (π β πΉ:dom πΉβΆβ) |
29 | | ssrest 22671 |
. . . . 5
β’ ((π β SAlg β§ π½ β π) β (π½ βΎt dom πΉ) β (π βΎt dom πΉ)) |
30 | 4, 17, 29 | syl2anc 584 |
. . . 4
β’ (π β (π½ βΎt dom πΉ) β (π βΎt dom πΉ)) |
31 | 30 | adantr 481 |
. . 3
β’ ((π β§ π β β) β (π½ βΎt dom πΉ) β (π βΎt dom πΉ)) |
32 | 10 | rabeqdv 3447 |
. . . . 5
β’ (π β {π₯ β dom πΉ β£ (πΉβπ₯) < π} = {π₯ β βͺ (π½ βΎt dom πΉ) β£ (πΉβπ₯) < π}) |
33 | 32 | adantr 481 |
. . . 4
β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} = {π₯ β βͺ (π½ βΎt dom πΉ) β£ (πΉβπ₯) < π}) |
34 | | nfcv 2903 |
. . . . 5
β’
β²π₯π |
35 | | nfcv 2903 |
. . . . 5
β’
β²π₯πΉ |
36 | | nfv 1917 |
. . . . 5
β’
β²π₯(π β§ π β β) |
37 | | eqid 2732 |
. . . . 5
β’ {π₯ β βͺ (π½
βΎt dom πΉ)
β£ (πΉβπ₯) < π} = {π₯ β βͺ (π½ βΎt dom πΉ) β£ (πΉβπ₯) < π} |
38 | | rexr 11256 |
. . . . . 6
β’ (π β β β π β
β*) |
39 | 38 | adantl 482 |
. . . . 5
β’ ((π β§ π β β) β π β β*) |
40 | 5 | adantr 481 |
. . . . 5
β’ ((π β§ π β β) β πΉ β ((π½ βΎt dom πΉ) Cn πΎ)) |
41 | 34, 35, 36, 22, 6, 37, 39, 40 | rfcnpre2 43700 |
. . . 4
β’ ((π β§ π β β) β {π₯ β βͺ (π½ βΎt dom πΉ) β£ (πΉβπ₯) < π} β (π½ βΎt dom πΉ)) |
42 | 33, 41 | eqeltrd 2833 |
. . 3
β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π½ βΎt dom πΉ)) |
43 | 31, 42 | sseldd 3982 |
. 2
β’ ((π β§ π β β) β {π₯ β dom πΉ β£ (πΉβπ₯) < π} β (π βΎt dom πΉ)) |
44 | 1, 4, 20, 28, 43 | issmfd 45437 |
1
β’ (π β πΉ β (SMblFnβπ)) |