| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfsmf | Structured version Visualization version GIF version | ||
| Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| cnfsmf.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| cnfsmf.k | ⊢ 𝐾 = (topGen‘ran (,)) |
| cnfsmf.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
| cnfsmf.s | ⊢ 𝑆 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| cnfsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | cnfsmf.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | cnfsmf.s | . . 3 ⊢ 𝑆 = (SalGen‘𝐽) | |
| 4 | 2, 3 | salgencld 46387 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 5 | cnfsmf.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) | |
| 6 | eqid 2731 | . . . . . 6 ⊢ ∪ (𝐽 ↾t dom 𝐹) = ∪ (𝐽 ↾t dom 𝐹) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 8 | 6, 7 | cnf 23156 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
| 10 | 9 | fdmd 6656 | . . 3 ⊢ (𝜑 → dom 𝐹 = ∪ (𝐽 ↾t dom 𝐹)) |
| 11 | ovex 7374 | . . . . . . . 8 ⊢ (𝐽 ↾t dom 𝐹) ∈ V | |
| 12 | 11 | uniex 7669 | . . . . . . 7 ⊢ ∪ (𝐽 ↾t dom 𝐹) ∈ V |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ∈ V) |
| 14 | 10, 13 | eqeltrd 2831 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 15 | 2, 14 | unirestss 45161 | . . . 4 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝐽) |
| 16 | 3 | sssalgen 46373 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝑆) |
| 17 | 2, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
| 18 | 17 | unissd 4864 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 ⊆ ∪ 𝑆) |
| 19 | 15, 18 | sstrd 3940 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝑆) |
| 20 | 10, 19 | eqsstrd 3964 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 21 | uniretop 24672 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 22 | cnfsmf.k | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 23 | 22 | unieqi 4866 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ (topGen‘ran (,)) |
| 24 | 21, 23 | eqtr4i 2757 | . . . . . 6 ⊢ ℝ = ∪ 𝐾 |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ = ∪ 𝐾) |
| 26 | 25 | feq3d 6631 | . . . 4 ⊢ (𝜑 → (𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ ↔ 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾)) |
| 27 | 9, 26 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ) |
| 28 | 27 | ffdmd 6676 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 29 | ssrest 23086 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐽 ⊆ 𝑆) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 30 | 4, 17, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 32 | 10 | rabeqdv 3410 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 34 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
| 35 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 36 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 37 | eqid 2731 | . . . . 5 ⊢ {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} | |
| 38 | rexr 11153 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 39 | 38 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 40 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
| 41 | 34, 35, 36, 22, 6, 37, 39, 40 | rfcnpre2 45068 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
| 42 | 33, 41 | eqeltrd 2831 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
| 43 | 31, 42 | sseldd 3930 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 44 | 1, 4, 20, 28, 43 | issmfd 46773 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4854 class class class wbr 5086 dom cdm 5611 ran crn 5612 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 ℝ*cxr 11140 < clt 11141 (,)cioo 13240 ↾t crest 17319 topGenctg 17336 Topctop 22803 Cn ccn 23134 SAlgcsalg 46346 SalGencsalgen 46350 SMblFncsmblfn 46733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-ioo 13244 df-ico 13246 df-rest 17321 df-topgen 17342 df-top 22804 df-topon 22821 df-bases 22856 df-cn 23137 df-salg 46347 df-salgen 46351 df-smblfn 46734 |
| This theorem is referenced by: cnfrrnsmf 46789 |
| Copyright terms: Public domain | W3C validator |