| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfsmf | Structured version Visualization version GIF version | ||
| Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| cnfsmf.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| cnfsmf.k | ⊢ 𝐾 = (topGen‘ran (,)) |
| cnfsmf.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
| cnfsmf.s | ⊢ 𝑆 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| cnfsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | cnfsmf.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | cnfsmf.s | . . 3 ⊢ 𝑆 = (SalGen‘𝐽) | |
| 4 | 2, 3 | salgencld 46347 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 5 | cnfsmf.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ ∪ (𝐽 ↾t dom 𝐹) = ∪ (𝐽 ↾t dom 𝐹) | |
| 7 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 8 | 6, 7 | cnf 23133 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
| 10 | 9 | fdmd 6698 | . . 3 ⊢ (𝜑 → dom 𝐹 = ∪ (𝐽 ↾t dom 𝐹)) |
| 11 | ovex 7420 | . . . . . . . 8 ⊢ (𝐽 ↾t dom 𝐹) ∈ V | |
| 12 | 11 | uniex 7717 | . . . . . . 7 ⊢ ∪ (𝐽 ↾t dom 𝐹) ∈ V |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ∈ V) |
| 14 | 10, 13 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 15 | 2, 14 | unirestss 45118 | . . . 4 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝐽) |
| 16 | 3 | sssalgen 46333 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝑆) |
| 17 | 2, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
| 18 | 17 | unissd 4881 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 ⊆ ∪ 𝑆) |
| 19 | 15, 18 | sstrd 3957 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝑆) |
| 20 | 10, 19 | eqsstrd 3981 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 21 | uniretop 24650 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 22 | cnfsmf.k | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 23 | 22 | unieqi 4883 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ (topGen‘ran (,)) |
| 24 | 21, 23 | eqtr4i 2755 | . . . . . 6 ⊢ ℝ = ∪ 𝐾 |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ = ∪ 𝐾) |
| 26 | 25 | feq3d 6673 | . . . 4 ⊢ (𝜑 → (𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ ↔ 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾)) |
| 27 | 9, 26 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ) |
| 28 | 27 | ffdmd 6718 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 29 | ssrest 23063 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐽 ⊆ 𝑆) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 30 | 4, 17, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 32 | 10 | rabeqdv 3421 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 34 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
| 35 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 36 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 37 | eqid 2729 | . . . . 5 ⊢ {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} | |
| 38 | rexr 11220 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 39 | 38 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 40 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
| 41 | 34, 35, 36, 22, 6, 37, 39, 40 | rfcnpre2 45025 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
| 42 | 33, 41 | eqeltrd 2828 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
| 43 | 31, 42 | sseldd 3947 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 44 | 1, 4, 20, 28, 43 | issmfd 46733 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 dom cdm 5638 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 ↾t crest 17383 topGenctg 17400 Topctop 22780 Cn ccn 23111 SAlgcsalg 46306 SalGencsalgen 46310 SMblFncsmblfn 46693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-ioo 13310 df-ico 13312 df-rest 17385 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-salg 46307 df-salgen 46311 df-smblfn 46694 |
| This theorem is referenced by: cnfrrnsmf 46749 |
| Copyright terms: Public domain | W3C validator |