Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfsmf Structured version   Visualization version   GIF version

Theorem cnfsmf 46736
Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cnfsmf.1 (𝜑𝐽 ∈ Top)
cnfsmf.k 𝐾 = (topGen‘ran (,))
cnfsmf.f (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
cnfsmf.s 𝑆 = (SalGen‘𝐽)
Assertion
Ref Expression
cnfsmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem cnfsmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . 2 𝑎𝜑
2 cnfsmf.1 . . 3 (𝜑𝐽 ∈ Top)
3 cnfsmf.s . . 3 𝑆 = (SalGen‘𝐽)
42, 3salgencld 46345 . 2 (𝜑𝑆 ∈ SAlg)
5 cnfsmf.f . . . . 5 (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
6 eqid 2736 . . . . . 6 (𝐽t dom 𝐹) = (𝐽t dom 𝐹)
7 eqid 2736 . . . . . 6 𝐾 = 𝐾
86, 7cnf 23189 . . . . 5 (𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾) → 𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
95, 8syl 17 . . . 4 (𝜑𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
109fdmd 6721 . . 3 (𝜑 → dom 𝐹 = (𝐽t dom 𝐹))
11 ovex 7443 . . . . . . . 8 (𝐽t dom 𝐹) ∈ V
1211uniex 7740 . . . . . . 7 (𝐽t dom 𝐹) ∈ V
1312a1i 11 . . . . . 6 (𝜑 (𝐽t dom 𝐹) ∈ V)
1410, 13eqeltrd 2835 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
152, 14unirestss 45115 . . . 4 (𝜑 (𝐽t dom 𝐹) ⊆ 𝐽)
163sssalgen 46331 . . . . . 6 (𝐽 ∈ Top → 𝐽𝑆)
172, 16syl 17 . . . . 5 (𝜑𝐽𝑆)
1817unissd 4898 . . . 4 (𝜑 𝐽 𝑆)
1915, 18sstrd 3974 . . 3 (𝜑 (𝐽t dom 𝐹) ⊆ 𝑆)
2010, 19eqsstrd 3998 . 2 (𝜑 → dom 𝐹 𝑆)
21 uniretop 24706 . . . . . . 7 ℝ = (topGen‘ran (,))
22 cnfsmf.k . . . . . . . 8 𝐾 = (topGen‘ran (,))
2322unieqi 4900 . . . . . . 7 𝐾 = (topGen‘ran (,))
2421, 23eqtr4i 2762 . . . . . 6 ℝ = 𝐾
2524a1i 11 . . . . 5 (𝜑 → ℝ = 𝐾)
2625feq3d 6698 . . . 4 (𝜑 → (𝐹: (𝐽t dom 𝐹)⟶ℝ ↔ 𝐹: (𝐽t dom 𝐹)⟶ 𝐾))
279, 26mpbird 257 . . 3 (𝜑𝐹: (𝐽t dom 𝐹)⟶ℝ)
2827ffdmd 6741 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
29 ssrest 23119 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐽𝑆) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
304, 17, 29syl2anc 584 . . . 4 (𝜑 → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3130adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3210rabeqdv 3436 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
3332adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
34 nfcv 2899 . . . . 5 𝑥𝑎
35 nfcv 2899 . . . . 5 𝑥𝐹
36 nfv 1914 . . . . 5 𝑥(𝜑𝑎 ∈ ℝ)
37 eqid 2736 . . . . 5 {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
38 rexr 11286 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3938adantl 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
405adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
4134, 35, 36, 22, 6, 37, 39, 40rfcnpre2 45022 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4233, 41eqeltrd 2835 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4331, 42sseldd 3964 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
441, 4, 20, 28, 43issmfd 46731 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931   cuni 4888   class class class wbr 5124  dom cdm 5659  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  *cxr 11273   < clt 11274  (,)cioo 13367  t crest 17439  topGenctg 17456  Topctop 22836   Cn ccn 23167  SAlgcsalg 46304  SalGencsalgen 46308  SMblFncsmblfn 46691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-ioo 13371  df-ico 13373  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cn 23170  df-salg 46305  df-salgen 46309  df-smblfn 46692
This theorem is referenced by:  cnfrrnsmf  46747
  Copyright terms: Public domain W3C validator