Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfsmf Structured version   Visualization version   GIF version

Theorem cnfsmf 42885
 Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cnfsmf.1 (𝜑𝐽 ∈ Top)
cnfsmf.k 𝐾 = (topGen‘ran (,))
cnfsmf.f (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
cnfsmf.s 𝑆 = (SalGen‘𝐽)
Assertion
Ref Expression
cnfsmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem cnfsmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1908 . 2 𝑎𝜑
2 cnfsmf.1 . . 3 (𝜑𝐽 ∈ Top)
3 cnfsmf.s . . 3 𝑆 = (SalGen‘𝐽)
42, 3salgencld 42500 . 2 (𝜑𝑆 ∈ SAlg)
5 cnfsmf.f . . . . 5 (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
6 eqid 2825 . . . . . 6 (𝐽t dom 𝐹) = (𝐽t dom 𝐹)
7 eqid 2825 . . . . . 6 𝐾 = 𝐾
86, 7cnf 21772 . . . . 5 (𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾) → 𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
95, 8syl 17 . . . 4 (𝜑𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
109fdmd 6519 . . 3 (𝜑 → dom 𝐹 = (𝐽t dom 𝐹))
11 ovex 7184 . . . . . . . 8 (𝐽t dom 𝐹) ∈ V
1211uniex 7458 . . . . . . 7 (𝐽t dom 𝐹) ∈ V
1312a1i 11 . . . . . 6 (𝜑 (𝐽t dom 𝐹) ∈ V)
1410, 13eqeltrd 2917 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
152, 14unirestss 41258 . . . 4 (𝜑 (𝐽t dom 𝐹) ⊆ 𝐽)
163sssalgen 42486 . . . . . 6 (𝐽 ∈ Top → 𝐽𝑆)
172, 16syl 17 . . . . 5 (𝜑𝐽𝑆)
1817unissd 4860 . . . 4 (𝜑 𝐽 𝑆)
1915, 18sstrd 3980 . . 3 (𝜑 (𝐽t dom 𝐹) ⊆ 𝑆)
2010, 19eqsstrd 4008 . 2 (𝜑 → dom 𝐹 𝑆)
21 uniretop 23288 . . . . . . 7 ℝ = (topGen‘ran (,))
22 cnfsmf.k . . . . . . . 8 𝐾 = (topGen‘ran (,))
2322unieqi 4845 . . . . . . 7 𝐾 = (topGen‘ran (,))
2421, 23eqtr4i 2851 . . . . . 6 ℝ = 𝐾
2524a1i 11 . . . . 5 (𝜑 → ℝ = 𝐾)
2625feq3d 6497 . . . 4 (𝜑 → (𝐹: (𝐽t dom 𝐹)⟶ℝ ↔ 𝐹: (𝐽t dom 𝐹)⟶ 𝐾))
279, 26mpbird 258 . . 3 (𝜑𝐹: (𝐽t dom 𝐹)⟶ℝ)
2827ffdmd 6533 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
29 ssrest 21702 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐽𝑆) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
304, 17, 29syl2anc 584 . . . 4 (𝜑 → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3130adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3210rabeqdv 3489 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
3332adantr 481 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
34 nfcv 2981 . . . . 5 𝑥𝑎
35 nfcv 2981 . . . . 5 𝑥𝐹
36 nfv 1908 . . . . 5 𝑥(𝜑𝑎 ∈ ℝ)
37 eqid 2825 . . . . 5 {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
38 rexr 10679 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3938adantl 482 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
405adantr 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
4134, 35, 36, 22, 6, 37, 39, 40rfcnpre2 41155 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4233, 41eqeltrd 2917 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4331, 42sseldd 3971 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
441, 4, 20, 28, 43issmfd 42880 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  {crab 3146  Vcvv 3499   ⊆ wss 3939  ∪ cuni 4836   class class class wbr 5062  dom cdm 5553  ran crn 5554  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151  ℝcr 10528  ℝ*cxr 10666   < clt 10667  (,)cioo 12731   ↾t crest 16686  topGenctg 16703  Topctop 21419   Cn ccn 21750  SAlgcsalg 42461  SalGencsalgen 42465  SMblFncsmblfn 42845 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-ioo 12735  df-ico 12737  df-rest 16688  df-topgen 16709  df-top 21420  df-topon 21437  df-bases 21472  df-cn 21753  df-salg 42462  df-salgen 42466  df-smblfn 42846 This theorem is referenced by:  cnfrrnsmf  42896
 Copyright terms: Public domain W3C validator