Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfsmf Structured version   Visualization version   GIF version

Theorem cnfsmf 43024
Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cnfsmf.1 (𝜑𝐽 ∈ Top)
cnfsmf.k 𝐾 = (topGen‘ran (,))
cnfsmf.f (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
cnfsmf.s 𝑆 = (SalGen‘𝐽)
Assertion
Ref Expression
cnfsmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem cnfsmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑎𝜑
2 cnfsmf.1 . . 3 (𝜑𝐽 ∈ Top)
3 cnfsmf.s . . 3 𝑆 = (SalGen‘𝐽)
42, 3salgencld 42639 . 2 (𝜑𝑆 ∈ SAlg)
5 cnfsmf.f . . . . 5 (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
6 eqid 2823 . . . . . 6 (𝐽t dom 𝐹) = (𝐽t dom 𝐹)
7 eqid 2823 . . . . . 6 𝐾 = 𝐾
86, 7cnf 21856 . . . . 5 (𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾) → 𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
95, 8syl 17 . . . 4 (𝜑𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
109fdmd 6525 . . 3 (𝜑 → dom 𝐹 = (𝐽t dom 𝐹))
11 ovex 7191 . . . . . . . 8 (𝐽t dom 𝐹) ∈ V
1211uniex 7469 . . . . . . 7 (𝐽t dom 𝐹) ∈ V
1312a1i 11 . . . . . 6 (𝜑 (𝐽t dom 𝐹) ∈ V)
1410, 13eqeltrd 2915 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
152, 14unirestss 41397 . . . 4 (𝜑 (𝐽t dom 𝐹) ⊆ 𝐽)
163sssalgen 42625 . . . . . 6 (𝐽 ∈ Top → 𝐽𝑆)
172, 16syl 17 . . . . 5 (𝜑𝐽𝑆)
1817unissd 4850 . . . 4 (𝜑 𝐽 𝑆)
1915, 18sstrd 3979 . . 3 (𝜑 (𝐽t dom 𝐹) ⊆ 𝑆)
2010, 19eqsstrd 4007 . 2 (𝜑 → dom 𝐹 𝑆)
21 uniretop 23373 . . . . . . 7 ℝ = (topGen‘ran (,))
22 cnfsmf.k . . . . . . . 8 𝐾 = (topGen‘ran (,))
2322unieqi 4853 . . . . . . 7 𝐾 = (topGen‘ran (,))
2421, 23eqtr4i 2849 . . . . . 6 ℝ = 𝐾
2524a1i 11 . . . . 5 (𝜑 → ℝ = 𝐾)
2625feq3d 6503 . . . 4 (𝜑 → (𝐹: (𝐽t dom 𝐹)⟶ℝ ↔ 𝐹: (𝐽t dom 𝐹)⟶ 𝐾))
279, 26mpbird 259 . . 3 (𝜑𝐹: (𝐽t dom 𝐹)⟶ℝ)
2827ffdmd 6539 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
29 ssrest 21786 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐽𝑆) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
304, 17, 29syl2anc 586 . . . 4 (𝜑 → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3130adantr 483 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3210rabeqdv 3486 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
3332adantr 483 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
34 nfcv 2979 . . . . 5 𝑥𝑎
35 nfcv 2979 . . . . 5 𝑥𝐹
36 nfv 1915 . . . . 5 𝑥(𝜑𝑎 ∈ ℝ)
37 eqid 2823 . . . . 5 {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
38 rexr 10689 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3938adantl 484 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
405adantr 483 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
4134, 35, 36, 22, 6, 37, 39, 40rfcnpre2 41295 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4233, 41eqeltrd 2915 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4331, 42sseldd 3970 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
441, 4, 20, 28, 43issmfd 43019 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  wss 3938   cuni 4840   class class class wbr 5068  dom cdm 5557  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  *cxr 10676   < clt 10677  (,)cioo 12741  t crest 16696  topGenctg 16713  Topctop 21503   Cn ccn 21834  SAlgcsalg 42600  SalGencsalgen 42604  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745  df-ico 12747  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-salg 42601  df-salgen 42605  df-smblfn 42985
This theorem is referenced by:  cnfrrnsmf  43035
  Copyright terms: Public domain W3C validator