Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfsmf Structured version   Visualization version   GIF version

Theorem cnfsmf 46760
Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cnfsmf.1 (𝜑𝐽 ∈ Top)
cnfsmf.k 𝐾 = (topGen‘ran (,))
cnfsmf.f (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
cnfsmf.s 𝑆 = (SalGen‘𝐽)
Assertion
Ref Expression
cnfsmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem cnfsmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . 2 𝑎𝜑
2 cnfsmf.1 . . 3 (𝜑𝐽 ∈ Top)
3 cnfsmf.s . . 3 𝑆 = (SalGen‘𝐽)
42, 3salgencld 46369 . 2 (𝜑𝑆 ∈ SAlg)
5 cnfsmf.f . . . . 5 (𝜑𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
6 eqid 2736 . . . . . 6 (𝐽t dom 𝐹) = (𝐽t dom 𝐹)
7 eqid 2736 . . . . . 6 𝐾 = 𝐾
86, 7cnf 23255 . . . . 5 (𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾) → 𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
95, 8syl 17 . . . 4 (𝜑𝐹: (𝐽t dom 𝐹)⟶ 𝐾)
109fdmd 6745 . . 3 (𝜑 → dom 𝐹 = (𝐽t dom 𝐹))
11 ovex 7465 . . . . . . . 8 (𝐽t dom 𝐹) ∈ V
1211uniex 7762 . . . . . . 7 (𝐽t dom 𝐹) ∈ V
1312a1i 11 . . . . . 6 (𝜑 (𝐽t dom 𝐹) ∈ V)
1410, 13eqeltrd 2840 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
152, 14unirestss 45134 . . . 4 (𝜑 (𝐽t dom 𝐹) ⊆ 𝐽)
163sssalgen 46355 . . . . . 6 (𝐽 ∈ Top → 𝐽𝑆)
172, 16syl 17 . . . . 5 (𝜑𝐽𝑆)
1817unissd 4916 . . . 4 (𝜑 𝐽 𝑆)
1915, 18sstrd 3993 . . 3 (𝜑 (𝐽t dom 𝐹) ⊆ 𝑆)
2010, 19eqsstrd 4017 . 2 (𝜑 → dom 𝐹 𝑆)
21 uniretop 24784 . . . . . . 7 ℝ = (topGen‘ran (,))
22 cnfsmf.k . . . . . . . 8 𝐾 = (topGen‘ran (,))
2322unieqi 4918 . . . . . . 7 𝐾 = (topGen‘ran (,))
2421, 23eqtr4i 2767 . . . . . 6 ℝ = 𝐾
2524a1i 11 . . . . 5 (𝜑 → ℝ = 𝐾)
2625feq3d 6722 . . . 4 (𝜑 → (𝐹: (𝐽t dom 𝐹)⟶ℝ ↔ 𝐹: (𝐽t dom 𝐹)⟶ 𝐾))
279, 26mpbird 257 . . 3 (𝜑𝐹: (𝐽t dom 𝐹)⟶ℝ)
2827ffdmd 6765 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
29 ssrest 23185 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐽𝑆) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
304, 17, 29syl2anc 584 . . . 4 (𝜑 → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3130adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐽t dom 𝐹) ⊆ (𝑆t dom 𝐹))
3210rabeqdv 3451 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
3332adantr 480 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎})
34 nfcv 2904 . . . . 5 𝑥𝑎
35 nfcv 2904 . . . . 5 𝑥𝐹
36 nfv 1913 . . . . 5 𝑥(𝜑𝑎 ∈ ℝ)
37 eqid 2736 . . . . 5 {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} = {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎}
38 rexr 11308 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3938adantl 481 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
405adantr 480 . . . . 5 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽t dom 𝐹) Cn 𝐾))
4134, 35, 36, 22, 6, 37, 39, 40rfcnpre2 45041 . . . 4 ((𝜑𝑎 ∈ ℝ) → {𝑥 (𝐽t dom 𝐹) ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4233, 41eqeltrd 2840 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐽t dom 𝐹))
4331, 42sseldd 3983 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
441, 4, 20, 28, 43issmfd 46755 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  wss 3950   cuni 4906   class class class wbr 5142  dom cdm 5684  ran crn 5685  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  *cxr 11295   < clt 11296  (,)cioo 13388  t crest 17466  topGenctg 17483  Topctop 22900   Cn ccn 23233  SAlgcsalg 46328  SalGencsalgen 46332  SMblFncsmblfn 46715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-ioo 13392  df-ico 13394  df-rest 17468  df-topgen 17489  df-top 22901  df-topon 22918  df-bases 22954  df-cn 23236  df-salg 46329  df-salgen 46333  df-smblfn 46716
This theorem is referenced by:  cnfrrnsmf  46771
  Copyright terms: Public domain W3C validator