| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfsmf | Structured version Visualization version GIF version | ||
| Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| cnfsmf.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| cnfsmf.k | ⊢ 𝐾 = (topGen‘ran (,)) |
| cnfsmf.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
| cnfsmf.s | ⊢ 𝑆 = (SalGen‘𝐽) |
| Ref | Expression |
|---|---|
| cnfsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 2 | cnfsmf.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 3 | cnfsmf.s | . . 3 ⊢ 𝑆 = (SalGen‘𝐽) | |
| 4 | 2, 3 | salgencld 46345 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| 5 | cnfsmf.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) | |
| 6 | eqid 2736 | . . . . . 6 ⊢ ∪ (𝐽 ↾t dom 𝐹) = ∪ (𝐽 ↾t dom 𝐹) | |
| 7 | eqid 2736 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 8 | 6, 7 | cnf 23189 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
| 10 | 9 | fdmd 6721 | . . 3 ⊢ (𝜑 → dom 𝐹 = ∪ (𝐽 ↾t dom 𝐹)) |
| 11 | ovex 7443 | . . . . . . . 8 ⊢ (𝐽 ↾t dom 𝐹) ∈ V | |
| 12 | 11 | uniex 7740 | . . . . . . 7 ⊢ ∪ (𝐽 ↾t dom 𝐹) ∈ V |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ∈ V) |
| 14 | 10, 13 | eqeltrd 2835 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 15 | 2, 14 | unirestss 45115 | . . . 4 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝐽) |
| 16 | 3 | sssalgen 46331 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝑆) |
| 17 | 2, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
| 18 | 17 | unissd 4898 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 ⊆ ∪ 𝑆) |
| 19 | 15, 18 | sstrd 3974 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝑆) |
| 20 | 10, 19 | eqsstrd 3998 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
| 21 | uniretop 24706 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 22 | cnfsmf.k | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 23 | 22 | unieqi 4900 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ (topGen‘ran (,)) |
| 24 | 21, 23 | eqtr4i 2762 | . . . . . 6 ⊢ ℝ = ∪ 𝐾 |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ = ∪ 𝐾) |
| 26 | 25 | feq3d 6698 | . . . 4 ⊢ (𝜑 → (𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ ↔ 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾)) |
| 27 | 9, 26 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ) |
| 28 | 27 | ffdmd 6741 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
| 29 | ssrest 23119 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐽 ⊆ 𝑆) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
| 30 | 4, 17, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
| 32 | 10 | rabeqdv 3436 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
| 34 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
| 35 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 36 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) | |
| 37 | eqid 2736 | . . . . 5 ⊢ {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} | |
| 38 | rexr 11286 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
| 39 | 38 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
| 40 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
| 41 | 34, 35, 36, 22, 6, 37, 39, 40 | rfcnpre2 45022 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
| 42 | 33, 41 | eqeltrd 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
| 43 | 31, 42 | sseldd 3964 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
| 44 | 1, 4, 20, 28, 43 | issmfd 46731 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∪ cuni 4888 class class class wbr 5124 dom cdm 5659 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 ℝ*cxr 11273 < clt 11274 (,)cioo 13367 ↾t crest 17439 topGenctg 17456 Topctop 22836 Cn ccn 23167 SAlgcsalg 46304 SalGencsalgen 46308 SMblFncsmblfn 46691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-ioo 13371 df-ico 13373 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cn 23170 df-salg 46305 df-salgen 46309 df-smblfn 46692 |
| This theorem is referenced by: cnfrrnsmf 46747 |
| Copyright terms: Public domain | W3C validator |