Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfsmf | Structured version Visualization version GIF version |
Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
cnfsmf.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
cnfsmf.k | ⊢ 𝐾 = (topGen‘ran (,)) |
cnfsmf.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
cnfsmf.s | ⊢ 𝑆 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
cnfsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | cnfsmf.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | cnfsmf.s | . . 3 ⊢ 𝑆 = (SalGen‘𝐽) | |
4 | 2, 3 | salgencld 43778 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
5 | cnfsmf.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) | |
6 | eqid 2738 | . . . . . 6 ⊢ ∪ (𝐽 ↾t dom 𝐹) = ∪ (𝐽 ↾t dom 𝐹) | |
7 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
8 | 6, 7 | cnf 22305 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
10 | 9 | fdmd 6595 | . . 3 ⊢ (𝜑 → dom 𝐹 = ∪ (𝐽 ↾t dom 𝐹)) |
11 | ovex 7288 | . . . . . . . 8 ⊢ (𝐽 ↾t dom 𝐹) ∈ V | |
12 | 11 | uniex 7572 | . . . . . . 7 ⊢ ∪ (𝐽 ↾t dom 𝐹) ∈ V |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ∈ V) |
14 | 10, 13 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
15 | 2, 14 | unirestss 42562 | . . . 4 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝐽) |
16 | 3 | sssalgen 43764 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝑆) |
17 | 2, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
18 | 17 | unissd 4846 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 ⊆ ∪ 𝑆) |
19 | 15, 18 | sstrd 3927 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝑆) |
20 | 10, 19 | eqsstrd 3955 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
21 | uniretop 23832 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
22 | cnfsmf.k | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
23 | 22 | unieqi 4849 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ (topGen‘ran (,)) |
24 | 21, 23 | eqtr4i 2769 | . . . . . 6 ⊢ ℝ = ∪ 𝐾 |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ = ∪ 𝐾) |
26 | 25 | feq3d 6571 | . . . 4 ⊢ (𝜑 → (𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ ↔ 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾)) |
27 | 9, 26 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ) |
28 | 27 | ffdmd 6615 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
29 | ssrest 22235 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐽 ⊆ 𝑆) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
30 | 4, 17, 29 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
32 | 10 | rabeqdv 3409 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
34 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
35 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
36 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) | |
37 | eqid 2738 | . . . . 5 ⊢ {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} | |
38 | rexr 10952 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
39 | 38 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
40 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
41 | 34, 35, 36, 22, 6, 37, 39, 40 | rfcnpre2 42463 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
42 | 33, 41 | eqeltrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
43 | 31, 42 | sseldd 3918 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
44 | 1, 4, 20, 28, 43 | issmfd 44158 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 ↾t crest 17048 topGenctg 17065 Topctop 21950 Cn ccn 22283 SAlgcsalg 43739 SalGencsalgen 43743 SMblFncsmblfn 44123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 df-ico 13014 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-salg 43740 df-salgen 43744 df-smblfn 44124 |
This theorem is referenced by: cnfrrnsmf 44174 |
Copyright terms: Public domain | W3C validator |