![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnfsmf | Structured version Visualization version GIF version |
Description: A continuous function is measurable. Proposition 121D (b) of [Fremlin1] p. 36 is a special case of this theorem, where the topology on the domain is induced by the standard topology on n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
cnfsmf.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
cnfsmf.k | ⊢ 𝐾 = (topGen‘ran (,)) |
cnfsmf.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
cnfsmf.s | ⊢ 𝑆 = (SalGen‘𝐽) |
Ref | Expression |
---|---|
cnfsmf | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1994 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | cnfsmf.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
3 | cnfsmf.s | . . 3 ⊢ 𝑆 = (SalGen‘𝐽) | |
4 | 2, 3 | salgencld 41078 | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
5 | cnfsmf.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) | |
6 | eqid 2770 | . . . . . 6 ⊢ ∪ (𝐽 ↾t dom 𝐹) = ∪ (𝐽 ↾t dom 𝐹) | |
7 | eqid 2770 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
8 | 6, 7 | cnf 21270 | . . . . 5 ⊢ (𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾) → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾) |
10 | 9 | fdmd 39932 | . . 3 ⊢ (𝜑 → dom 𝐹 = ∪ (𝐽 ↾t dom 𝐹)) |
11 | ovex 6822 | . . . . . . . 8 ⊢ (𝐽 ↾t dom 𝐹) ∈ V | |
12 | 11 | uniex 7099 | . . . . . . 7 ⊢ ∪ (𝐽 ↾t dom 𝐹) ∈ V |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ∈ V) |
14 | 10, 13 | eqeltrd 2849 | . . . . 5 ⊢ (𝜑 → dom 𝐹 ∈ V) |
15 | 2, 14 | unirestss 39822 | . . . 4 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝐽) |
16 | 3 | sssalgen 41064 | . . . . . 6 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ 𝑆) |
17 | 2, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ⊆ 𝑆) |
18 | 17 | unissd 4596 | . . . 4 ⊢ (𝜑 → ∪ 𝐽 ⊆ ∪ 𝑆) |
19 | 15, 18 | sstrd 3760 | . . 3 ⊢ (𝜑 → ∪ (𝐽 ↾t dom 𝐹) ⊆ ∪ 𝑆) |
20 | 10, 19 | eqsstrd 3786 | . 2 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
21 | uniretop 22785 | . . . . . . 7 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
22 | cnfsmf.k | . . . . . . . 8 ⊢ 𝐾 = (topGen‘ran (,)) | |
23 | 22 | unieqi 4581 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ (topGen‘ran (,)) |
24 | 21, 23 | eqtr4i 2795 | . . . . . 6 ⊢ ℝ = ∪ 𝐾 |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ = ∪ 𝐾) |
26 | 25 | feq3d 6172 | . . . 4 ⊢ (𝜑 → (𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ ↔ 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶∪ 𝐾)) |
27 | 9, 26 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐹:∪ (𝐽 ↾t dom 𝐹)⟶ℝ) |
28 | 27 | ffdmd 6203 | . 2 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
29 | ssrest 21200 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐽 ⊆ 𝑆) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) | |
30 | 4, 17, 29 | syl2anc 565 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
31 | 30 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐽 ↾t dom 𝐹) ⊆ (𝑆 ↾t dom 𝐹)) |
32 | 10 | rabeqd 39791 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
33 | 32 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎}) |
34 | nfcv 2912 | . . . . 5 ⊢ Ⅎ𝑥𝑎 | |
35 | nfcv 2912 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
36 | nfv 1994 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) | |
37 | eqid 2770 | . . . . 5 ⊢ {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} | |
38 | rexr 10286 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
39 | 38 | adantl 467 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
40 | 5 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ ((𝐽 ↾t dom 𝐹) Cn 𝐾)) |
41 | 34, 35, 36, 22, 6, 37, 39, 40 | rfcnpre2 39706 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ ∪ (𝐽 ↾t dom 𝐹) ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
42 | 33, 41 | eqeltrd 2849 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝐽 ↾t dom 𝐹)) |
43 | 31, 42 | sseldd 3751 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t dom 𝐹)) |
44 | 1, 4, 20, 28, 43 | issmfd 41458 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 ⊆ wss 3721 ∪ cuni 4572 class class class wbr 4784 dom cdm 5249 ran crn 5250 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 ℝ*cxr 10274 < clt 10275 (,)cioo 12379 ↾t crest 16288 topGenctg 16305 Topctop 20917 Cn ccn 21248 SAlgcsalg 41039 SalGencsalgen 41043 SMblFncsmblfn 41423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-ioo 12383 df-ico 12385 df-rest 16290 df-topgen 16311 df-top 20918 df-topon 20935 df-bases 20970 df-cn 21251 df-salg 41040 df-salgen 41044 df-smblfn 41424 |
This theorem is referenced by: cnfrrnsmf 41474 |
Copyright terms: Public domain | W3C validator |