Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac21 Structured version   Visualization version   GIF version

Theorem dfac21 43049
Description: Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
dfac21 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))

Proof of Theorem dfac21
Dummy variables 𝑔 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . 7 𝑓 ∈ V
21dmex 7842 . . . . . 6 dom 𝑓 ∈ V
32a1i 11 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → dom 𝑓 ∈ V)
4 simpr 484 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → 𝑓:dom 𝑓⟶Comp)
5 fvex 6835 . . . . . . . 8 (∏t𝑓) ∈ V
65uniex 7677 . . . . . . 7 (∏t𝑓) ∈ V
7 acufl 23802 . . . . . . . 8 (CHOICE → UFL = V)
87adantr 480 . . . . . . 7 ((CHOICE𝑓:dom 𝑓⟶Comp) → UFL = V)
96, 8eleqtrrid 2835 . . . . . 6 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ UFL)
10 simpl 482 . . . . . . . 8 ((CHOICE𝑓:dom 𝑓⟶Comp) → CHOICE)
11 dfac10 10032 . . . . . . . 8 (CHOICE ↔ dom card = V)
1210, 11sylib 218 . . . . . . 7 ((CHOICE𝑓:dom 𝑓⟶Comp) → dom card = V)
136, 12eleqtrrid 2835 . . . . . 6 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ dom card)
149, 13elind 4151 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ (UFL ∩ dom card))
15 eqid 2729 . . . . . 6 (∏t𝑓) = (∏t𝑓)
16 eqid 2729 . . . . . 6 (∏t𝑓) = (∏t𝑓)
1715, 16ptcmpg 23942 . . . . 5 ((dom 𝑓 ∈ V ∧ 𝑓:dom 𝑓⟶Comp ∧ (∏t𝑓) ∈ (UFL ∩ dom card)) → (∏t𝑓) ∈ Comp)
183, 4, 14, 17syl3anc 1373 . . . 4 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ Comp)
1918ex 412 . . 3 (CHOICE → (𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
2019alrimiv 1927 . 2 (CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
21 fvex 6835 . . . . . . . . 9 (𝑔𝑦) ∈ V
22 kelac2lem 43047 . . . . . . . . 9 ((𝑔𝑦) ∈ V → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) ∈ Comp)
2321, 22mp1i 13 . . . . . . . 8 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑦 ∈ dom 𝑔) → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) ∈ Comp)
2423fmpttd 7049 . . . . . . 7 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom 𝑔⟶Comp)
2524ffdmd 6682 . . . . . 6 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp)
26 vex 3440 . . . . . . . . 9 𝑔 ∈ V
2726dmex 7842 . . . . . . . 8 dom 𝑔 ∈ V
2827mptex 7159 . . . . . . 7 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) ∈ V
29 id 22 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → 𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})))
30 dmeq 5846 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → dom 𝑓 = dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})))
3129, 30feq12d 6640 . . . . . . . 8 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → (𝑓:dom 𝑓⟶Comp ↔ (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp))
32 fveq2 6822 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → (∏t𝑓) = (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))))
3332eleq1d 2813 . . . . . . . 8 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → ((∏t𝑓) ∈ Comp ↔ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
3431, 33imbi12d 344 . . . . . . 7 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → ((𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) ↔ ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp)))
3528, 34spcv 3560 . . . . . 6 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
3625, 35syl5com 31 . . . . 5 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
37 fvex 6835 . . . . . . . 8 (𝑔𝑥) ∈ V
3837a1i 11 . . . . . . 7 ((((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ V)
39 df-nel 3030 . . . . . . . . . . 11 (∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔)
4039biimpi 216 . . . . . . . . . 10 (∅ ∉ ran 𝑔 → ¬ ∅ ∈ ran 𝑔)
4140ad2antlr 727 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔)
42 fvelrn 7010 . . . . . . . . . . . 12 ((Fun 𝑔𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
4342adantlr 715 . . . . . . . . . . 11 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
44 eleq1 2816 . . . . . . . . . . 11 ((𝑔𝑥) = ∅ → ((𝑔𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔))
4543, 44syl5ibcom 245 . . . . . . . . . 10 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔𝑥) = ∅ → ∅ ∈ ran 𝑔))
4645necon3bd 2939 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔𝑥) ≠ ∅))
4741, 46mpd 15 . . . . . . . 8 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
4847adantlr 715 . . . . . . 7 ((((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
49 fveq2 6822 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
5049unieqd 4871 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 (𝑔𝑦) = (𝑔𝑥))
5150pweqd 4568 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → 𝒫 (𝑔𝑦) = 𝒫 (𝑔𝑥))
5251sneqd 4589 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → {𝒫 (𝑔𝑦)} = {𝒫 (𝑔𝑥)})
5349, 52preq12d 4693 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → {(𝑔𝑦), {𝒫 (𝑔𝑦)}} = {(𝑔𝑥), {𝒫 (𝑔𝑥)}})
5453fveq2d 6826 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) = (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))
5554cbvmptv 5196 . . . . . . . . . . 11 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) = (𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))
5655fveq2i 6825 . . . . . . . . . 10 (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}})))
5756eleq1i 2819 . . . . . . . . 9 ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp ↔ (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
5857biimpi 216 . . . . . . . 8 ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp → (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
5958adantl 481 . . . . . . 7 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) → (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
6038, 48, 59kelac2 43048 . . . . . 6 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅)
6160ex 412 . . . . 5 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6236, 61syldc 48 . . . 4 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6362alrimiv 1927 . . 3 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
64 dfac9 10031 . . 3 (CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6563, 64sylibr 234 . 2 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → CHOICE)
6620, 65impbii 209 1 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wne 2925  wnel 3029  Vcvv 3436  cin 3902  c0 4284  𝒫 cpw 4551  {csn 4577  {cpr 4579   cuni 4858  cmpt 5173  dom cdm 5619  ran crn 5620  Fun wfun 6476  wf 6478  cfv 6482  Xcixp 8824  cardccrd 9831  CHOICEwac 10009  topGenctg 17341  tcpt 17342  Compccmp 23271  UFLcufl 23785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-fin 8876  df-fi 9301  df-wdom 9457  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-topgen 17347  df-pt 17348  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-cmp 23272  df-fil 23731  df-ufil 23786  df-ufl 23787  df-flim 23824  df-fcls 23826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator