Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfac21 Structured version   Visualization version   GIF version

Theorem dfac21 38313
Description: Tychonoff's theorem is a choice equivalent. Definition AC21 of Schechter p. 461. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
dfac21 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))

Proof of Theorem dfac21
Dummy variables 𝑔 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3353 . . . . . . 7 𝑓 ∈ V
21dmex 7297 . . . . . 6 dom 𝑓 ∈ V
32a1i 11 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → dom 𝑓 ∈ V)
4 simpr 477 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → 𝑓:dom 𝑓⟶Comp)
5 fvex 6388 . . . . . . . 8 (∏t𝑓) ∈ V
65uniex 7151 . . . . . . 7 (∏t𝑓) ∈ V
7 acufl 22000 . . . . . . . 8 (CHOICE → UFL = V)
87adantr 472 . . . . . . 7 ((CHOICE𝑓:dom 𝑓⟶Comp) → UFL = V)
96, 8syl5eleqr 2851 . . . . . 6 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ UFL)
10 simpl 474 . . . . . . . 8 ((CHOICE𝑓:dom 𝑓⟶Comp) → CHOICE)
11 dfac10 9212 . . . . . . . 8 (CHOICE ↔ dom card = V)
1210, 11sylib 209 . . . . . . 7 ((CHOICE𝑓:dom 𝑓⟶Comp) → dom card = V)
136, 12syl5eleqr 2851 . . . . . 6 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ dom card)
149, 13elind 3960 . . . . 5 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ (UFL ∩ dom card))
15 eqid 2765 . . . . . 6 (∏t𝑓) = (∏t𝑓)
16 eqid 2765 . . . . . 6 (∏t𝑓) = (∏t𝑓)
1715, 16ptcmpg 22140 . . . . 5 ((dom 𝑓 ∈ V ∧ 𝑓:dom 𝑓⟶Comp ∧ (∏t𝑓) ∈ (UFL ∩ dom card)) → (∏t𝑓) ∈ Comp)
183, 4, 14, 17syl3anc 1490 . . . 4 ((CHOICE𝑓:dom 𝑓⟶Comp) → (∏t𝑓) ∈ Comp)
1918ex 401 . . 3 (CHOICE → (𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
2019alrimiv 2022 . 2 (CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
21 fvex 6388 . . . . . . . . 9 (𝑔𝑦) ∈ V
22 kelac2lem 38311 . . . . . . . . 9 ((𝑔𝑦) ∈ V → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) ∈ Comp)
2321, 22mp1i 13 . . . . . . . 8 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑦 ∈ dom 𝑔) → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) ∈ Comp)
2423fmpttd 6575 . . . . . . 7 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom 𝑔⟶Comp)
2524ffdmd 6245 . . . . . 6 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp)
26 vex 3353 . . . . . . . . 9 𝑔 ∈ V
2726dmex 7297 . . . . . . . 8 dom 𝑔 ∈ V
2827mptex 6679 . . . . . . 7 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) ∈ V
29 id 22 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → 𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})))
30 dmeq 5492 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → dom 𝑓 = dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})))
3129, 30feq12d 6211 . . . . . . . 8 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → (𝑓:dom 𝑓⟶Comp ↔ (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp))
32 fveq2 6375 . . . . . . . . 9 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → (∏t𝑓) = (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))))
3332eleq1d 2829 . . . . . . . 8 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → ((∏t𝑓) ∈ Comp ↔ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
3431, 33imbi12d 335 . . . . . . 7 (𝑓 = (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) → ((𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) ↔ ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp)))
3528, 34spcv 3451 . . . . . 6 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ((𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})):dom (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))⟶Comp → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
3625, 35syl5com 31 . . . . 5 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp))
37 fvex 6388 . . . . . . . 8 (𝑔𝑥) ∈ V
3837a1i 11 . . . . . . 7 ((((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ V)
39 df-nel 3041 . . . . . . . . . . 11 (∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔)
4039biimpi 207 . . . . . . . . . 10 (∅ ∉ ran 𝑔 → ¬ ∅ ∈ ran 𝑔)
4140ad2antlr 718 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔)
42 fvelrn 6542 . . . . . . . . . . . 12 ((Fun 𝑔𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
4342adantlr 706 . . . . . . . . . . 11 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
44 eleq1 2832 . . . . . . . . . . 11 ((𝑔𝑥) = ∅ → ((𝑔𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔))
4543, 44syl5ibcom 236 . . . . . . . . . 10 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔𝑥) = ∅ → ∅ ∈ ran 𝑔))
4645necon3bd 2951 . . . . . . . . 9 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔𝑥) ≠ ∅))
4741, 46mpd 15 . . . . . . . 8 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
4847adantlr 706 . . . . . . 7 ((((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
49 fveq2 6375 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑔𝑦) = (𝑔𝑥))
5049unieqd 4604 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 (𝑔𝑦) = (𝑔𝑥))
5150pweqd 4320 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → 𝒫 (𝑔𝑦) = 𝒫 (𝑔𝑥))
5251sneqd 4346 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → {𝒫 (𝑔𝑦)} = {𝒫 (𝑔𝑥)})
5349, 52preq12d 4431 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → {(𝑔𝑦), {𝒫 (𝑔𝑦)}} = {(𝑔𝑥), {𝒫 (𝑔𝑥)}})
5453fveq2d 6379 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}) = (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))
5554cbvmptv 4909 . . . . . . . . . . 11 (𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}})) = (𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))
5655fveq2i 6378 . . . . . . . . . 10 (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}})))
5756eleq1i 2835 . . . . . . . . 9 ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp ↔ (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
5857biimpi 207 . . . . . . . 8 ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp → (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
5958adantl 473 . . . . . . 7 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) → (∏t‘(𝑥 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑥), {𝒫 (𝑔𝑥)}}))) ∈ Comp)
6038, 48, 59kelac2 38312 . . . . . 6 (((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) ∧ (∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅)
6160ex 401 . . . . 5 ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → ((∏t‘(𝑦 ∈ dom 𝑔 ↦ (topGen‘{(𝑔𝑦), {𝒫 (𝑔𝑦)}}))) ∈ Comp → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6236, 61syldc 48 . . . 4 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6362alrimiv 2022 . . 3 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
64 dfac9 9211 . . 3 (CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
6563, 64sylibr 225 . 2 (∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp) → CHOICE)
6620, 65impbii 200 1 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Comp → (∏t𝑓) ∈ Comp))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wcel 2155  wne 2937  wnel 3040  Vcvv 3350  cin 3731  c0 4079  𝒫 cpw 4315  {csn 4334  {cpr 4336   cuni 4594  cmpt 4888  dom cdm 5277  ran crn 5278  Fun wfun 6062  wf 6064  cfv 6068  Xcixp 8113  cardccrd 9012  CHOICEwac 9189  topGenctg 16364  tcpt 16365  Compccmp 21469  UFLcufl 21983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-rpss 7135  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fi 8524  df-wdom 8671  df-card 9016  df-acn 9019  df-ac 9190  df-cda 9243  df-topgen 16370  df-pt 16371  df-fbas 20016  df-fg 20017  df-top 20978  df-topon 20995  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-cmp 21470  df-fil 21929  df-ufil 21984  df-ufl 21985  df-flim 22022  df-fcls 22024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator