MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Visualization version   GIF version

Theorem ablfaclem2 20121
Description: Lemma for ablfac 20123. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
ablfaclem2.f (𝜑𝐹:𝐴⟶Word 𝐶)
ablfaclem2.q (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
ablfaclem2.l 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
ablfaclem2.g (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
Assertion
Ref Expression
ablfaclem2 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝑦,𝐴   𝐹,𝑠   𝑔,𝑟,𝑠,𝑦,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠   𝑦,𝑤,𝐶,𝑥   𝑊,𝑝,𝑤,𝑥,𝑦   𝐻,𝑠   𝜑,𝑝,𝑠,𝑤,𝑥,𝑦   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐵(𝑦)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝐹(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐻(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐿(𝑥,𝑦,𝑤,𝑔,𝑠,𝑟,𝑝)   𝑂(𝑦,𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19818 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 ablfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19159 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
5 ablfac.c . . . 4 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 ablfac.2 . . . 4 (𝜑𝐵 ∈ Fin)
7 ablfac.o . . . 4 𝑂 = (od‘𝐺)
8 ablfac.a . . . 4 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
9 ablfac.s . . . 4 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
10 ablfac.w . . . 4 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 20120 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
121, 2, 4, 114syl 19 . 2 (𝜑 → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
13 ablfaclem2.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶Word 𝐶)
1413ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ Word 𝐶)
15 wrdf 14554 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ Word 𝐶 → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1716ffdmd 6767 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶𝐶)
1817ffvelcdmda 7104 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
1918anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2019ralrimivva 3200 . . . . . . . 8 (𝜑 → ∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶)
21 eqid 2735 . . . . . . . . 9 (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))
2221fmpox 8091 . . . . . . . 8 (∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2320, 22sylib 218 . . . . . . 7 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
24 ablfaclem2.l . . . . . . . 8 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
2524feq2i 6729 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2623, 25sylibr 234 . . . . . 6 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶)
27 ablfaclem2.g . . . . . . 7 (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
28 f1of 6849 . . . . . . 7 (𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿𝐻:(0..^(♯‘𝐿))⟶𝐿)
2927, 28syl 17 . . . . . 6 (𝜑𝐻:(0..^(♯‘𝐿))⟶𝐿)
30 fco 6761 . . . . . 6 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶𝐻:(0..^(♯‘𝐿))⟶𝐿) → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
3126, 29, 30syl2anc 584 . . . . 5 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
32 iswrdi 14553 . . . . 5 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
3331, 32syl 17 . . . 4 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
34 ablfaclem2.q . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
3534r19.21bi 3249 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
368ssrab3 4092 . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ ℙ
3736a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℙ)
383, 7, 9, 1, 6, 37ablfac1b 20105 . . . . . . . . . . . . . . . . 17 (𝜑𝐺dom DProd 𝑆)
393fvexi 6921 . . . . . . . . . . . . . . . . . . . 20 𝐵 ∈ V
4039rabex 5345 . . . . . . . . . . . . . . . . . . 19 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4140, 9dmmpti 6713 . . . . . . . . . . . . . . . . . 18 dom 𝑆 = 𝐴
4241a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑆 = 𝐴)
4338, 42dprdf2 20042 . . . . . . . . . . . . . . . 16 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4443ffvelcdmda 7104 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑆𝑦) ∈ (SubGrp‘𝐺))
453, 5, 1, 6, 7, 8, 9, 10ablfaclem1 20120 . . . . . . . . . . . . . . 15 ((𝑆𝑦) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
4644, 45syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
4735, 46eleqtrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
48 breq2 5152 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → (𝐺dom DProd 𝑠𝐺dom DProd (𝐹𝑦)))
49 oveq2 7439 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑦) → (𝐺 DProd 𝑠) = (𝐺 DProd (𝐹𝑦)))
5049eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → ((𝐺 DProd 𝑠) = (𝑆𝑦) ↔ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5148, 50anbi12d 632 . . . . . . . . . . . . . . 15 (𝑠 = (𝐹𝑦) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦)) ↔ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5251elrab 3695 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} ↔ ((𝐹𝑦) ∈ Word 𝐶 ∧ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5352simprbi 496 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5447, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5554simpld 494 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝐹𝑦))
56 dprdf 20041 . . . . . . . . . . 11 (𝐺dom DProd (𝐹𝑦) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
5755, 56syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
5857ffvelcdmda 7104 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
5958anasss 466 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6057feqmptd 6977 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6155, 60breqtrd 5174 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6243feqmptd 6977 . . . . . . . . . 10 (𝜑𝑆 = (𝑦𝐴 ↦ (𝑆𝑦)))
6360oveq2d 7447 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
6454simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))
6563, 64eqtr3d 2777 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝑆𝑦))
6665mpteq2dva 5248 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))) = (𝑦𝐴 ↦ (𝑆𝑦)))
6762, 66eqtr4d 2778 . . . . . . . . 9 (𝜑𝑆 = (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
6838, 67breqtrd 5174 . . . . . . . 8 (𝜑𝐺dom DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
6959, 61, 68dprd2d2 20079 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∧ (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))))
7069simpld 494 . . . . . 6 (𝜑𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
7126fdmd 6747 . . . . . 6 (𝜑 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7270, 71, 27dprdf1o 20067 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7372simpld 494 . . . 4 (𝜑𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻))
7472simprd 495 . . . . 5 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
7569simprd 495 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
7667oveq2d 7447 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
77 ssidd 4019 . . . . . . 7 (𝜑𝐴𝐴)
783, 7, 9, 1, 6, 37, 8, 77ablfac1c 20106 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
7976, 78eqtr3d 2777 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))) = 𝐵)
8074, 75, 793eqtrd 2779 . . . 4 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)
81 breq2 5152 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺dom DProd 𝑠𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
82 oveq2 7439 . . . . . . 7 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺 DProd 𝑠) = (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
8382eqeq1d 2737 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺 DProd 𝑠) = 𝐵 ↔ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵))
8481, 83anbi12d 632 . . . . 5 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵) ↔ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)))
8584rspcev 3622 . . . 4 ((((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶 ∧ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
8633, 73, 80, 85syl12anc 837 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
87 rabn0 4395 . . 3 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
8886, 87sylibr 234 . 2 (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅)
8912, 88eqnetrd 3006 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  cin 3962  wss 3963  c0 4339  {csn 4631   ciun 4996   class class class wbr 5148  cmpt 5231   × cxp 5687  dom cdm 5689  ran crn 5690  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  0cc0 11153  ..^cfzo 13691  cexp 14099  chash 14366  Word cword 14549  cdvds 16287  cprime 16705   pCnt cpc 16870  Basecbs 17245  s cress 17274  Grpcgrp 18964  SubGrpcsubg 19151  odcod 19557   pGrp cpgp 19559  Abelcabl 19814  CycGrpccyg 19910   DProd cdprd 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-word 14550  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-eqg 19156  df-ghm 19244  df-gim 19290  df-ga 19321  df-cntz 19348  df-oppg 19377  df-od 19561  df-lsm 19669  df-pj1 19670  df-cmn 19815  df-abl 19816  df-dprd 20030
This theorem is referenced by:  ablfaclem3  20122
  Copyright terms: Public domain W3C validator