MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Visualization version   GIF version

Theorem ablfaclem2 19130
Description: Lemma for ablfac 19132. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
ablfaclem2.f (𝜑𝐹:𝐴⟶Word 𝐶)
ablfaclem2.q (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
ablfaclem2.l 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
ablfaclem2.g (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
Assertion
Ref Expression
ablfaclem2 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝑦,𝐴   𝐹,𝑠   𝑔,𝑟,𝑠,𝑦,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠   𝑦,𝑤,𝐶,𝑥   𝑊,𝑝,𝑤,𝑥,𝑦   𝐻,𝑠   𝜑,𝑝,𝑠,𝑤,𝑥,𝑦   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐵(𝑦)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝐹(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐻(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐿(𝑥,𝑦,𝑤,𝑔,𝑠,𝑟,𝑝)   𝑂(𝑦,𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 18833 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 ablfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 18213 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
5 ablfac.c . . . 4 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 ablfac.2 . . . 4 (𝜑𝐵 ∈ Fin)
7 ablfac.o . . . 4 𝑂 = (od‘𝐺)
8 ablfac.a . . . 4 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
9 ablfac.s . . . 4 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
10 ablfac.w . . . 4 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 19129 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
121, 2, 4, 114syl 19 . 2 (𝜑 → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
13 ablfaclem2.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶Word 𝐶)
1413ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ Word 𝐶)
15 wrdf 13859 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ Word 𝐶 → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1716ffdmd 6533 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶𝐶)
1817ffvelrnda 6846 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
1918anasss 467 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2019ralrimivva 3195 . . . . . . . 8 (𝜑 → ∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶)
21 eqid 2825 . . . . . . . . 9 (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))
2221fmpox 7759 . . . . . . . 8 (∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2320, 22sylib 219 . . . . . . 7 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
24 ablfaclem2.l . . . . . . . 8 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
2524feq2i 6502 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2623, 25sylibr 235 . . . . . 6 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶)
27 ablfaclem2.g . . . . . . 7 (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
28 f1of 6611 . . . . . . 7 (𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿𝐻:(0..^(♯‘𝐿))⟶𝐿)
2927, 28syl 17 . . . . . 6 (𝜑𝐻:(0..^(♯‘𝐿))⟶𝐿)
30 fco 6527 . . . . . 6 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶𝐻:(0..^(♯‘𝐿))⟶𝐿) → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
3126, 29, 30syl2anc 584 . . . . 5 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
32 iswrdi 13858 . . . . 5 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
3331, 32syl 17 . . . 4 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
34 ablfaclem2.q . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
3534r19.21bi 3212 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
368ssrab3 4060 . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ ℙ
3736a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℙ)
383, 7, 9, 1, 6, 37ablfac1b 19114 . . . . . . . . . . . . . . . . 17 (𝜑𝐺dom DProd 𝑆)
393fvexi 6680 . . . . . . . . . . . . . . . . . . . 20 𝐵 ∈ V
4039rabex 5231 . . . . . . . . . . . . . . . . . . 19 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4140, 9dmmpti 6488 . . . . . . . . . . . . . . . . . 18 dom 𝑆 = 𝐴
4241a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑆 = 𝐴)
4338, 42dprdf2 19051 . . . . . . . . . . . . . . . 16 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4443ffvelrnda 6846 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑆𝑦) ∈ (SubGrp‘𝐺))
453, 5, 1, 6, 7, 8, 9, 10ablfaclem1 19129 . . . . . . . . . . . . . . 15 ((𝑆𝑦) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
4644, 45syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
4735, 46eleqtrd 2919 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
48 breq2 5066 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → (𝐺dom DProd 𝑠𝐺dom DProd (𝐹𝑦)))
49 oveq2 7159 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑦) → (𝐺 DProd 𝑠) = (𝐺 DProd (𝐹𝑦)))
5049eqeq1d 2827 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → ((𝐺 DProd 𝑠) = (𝑆𝑦) ↔ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5148, 50anbi12d 630 . . . . . . . . . . . . . . 15 (𝑠 = (𝐹𝑦) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦)) ↔ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5251elrab 3683 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} ↔ ((𝐹𝑦) ∈ Word 𝐶 ∧ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5352simprbi 497 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5447, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5554simpld 495 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝐹𝑦))
56 dprdf 19050 . . . . . . . . . . 11 (𝐺dom DProd (𝐹𝑦) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
5755, 56syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
5857ffvelrnda 6846 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
5958anasss 467 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6057feqmptd 6729 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6155, 60breqtrd 5088 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6243feqmptd 6729 . . . . . . . . . 10 (𝜑𝑆 = (𝑦𝐴 ↦ (𝑆𝑦)))
6360oveq2d 7167 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
6454simprd 496 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))
6563, 64eqtr3d 2862 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝑆𝑦))
6665mpteq2dva 5157 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))) = (𝑦𝐴 ↦ (𝑆𝑦)))
6762, 66eqtr4d 2863 . . . . . . . . 9 (𝜑𝑆 = (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
6838, 67breqtrd 5088 . . . . . . . 8 (𝜑𝐺dom DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
6959, 61, 68dprd2d2 19088 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∧ (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))))
7069simpld 495 . . . . . 6 (𝜑𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
7126fdmd 6519 . . . . . 6 (𝜑 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7270, 71, 27dprdf1o 19076 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7372simpld 495 . . . 4 (𝜑𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻))
7472simprd 496 . . . . 5 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
7569simprd 496 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
7667oveq2d 7167 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
77 ssidd 3993 . . . . . . 7 (𝜑𝐴𝐴)
783, 7, 9, 1, 6, 37, 8, 77ablfac1c 19115 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
7976, 78eqtr3d 2862 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))) = 𝐵)
8074, 75, 793eqtrd 2864 . . . 4 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)
81 breq2 5066 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺dom DProd 𝑠𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
82 oveq2 7159 . . . . . . 7 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺 DProd 𝑠) = (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
8382eqeq1d 2827 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺 DProd 𝑠) = 𝐵 ↔ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵))
8481, 83anbi12d 630 . . . . 5 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵) ↔ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)))
8584rspcev 3626 . . . 4 ((((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶 ∧ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
8633, 73, 80, 85syl12anc 834 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
87 rabn0 4342 . . 3 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
8886, 87sylibr 235 . 2 (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅)
8912, 88eqnetrd 3087 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wne 3020  wral 3142  wrex 3143  {crab 3146  cin 3938  wss 3939  c0 4294  {csn 4563   ciun 4916   class class class wbr 5062  cmpt 5142   × cxp 5551  dom cdm 5553  ran crn 5554  ccom 5557  wf 6347  1-1-ontowf1o 6350  cfv 6351  (class class class)co 7151  cmpo 7153  Fincfn 8501  0cc0 10529  ..^cfzo 13026  cexp 13422  chash 13683  Word cword 13854  cdvds 15599  cprime 16007   pCnt cpc 16165  Basecbs 16475  s cress 16476  Grpcgrp 18035  SubGrpcsubg 18205  odcod 18574   pGrp cpgp 18576  Abelcabl 18829  CycGrpccyg 18918   DProd cdprd 19037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-word 13855  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-mulg 18157  df-subg 18208  df-eqg 18210  df-ghm 18288  df-gim 18331  df-ga 18352  df-cntz 18379  df-oppg 18406  df-od 18578  df-lsm 18683  df-pj1 18684  df-cmn 18830  df-abl 18831  df-dprd 19039
This theorem is referenced by:  ablfaclem3  19131
  Copyright terms: Public domain W3C validator