Step | Hyp | Ref
| Expression |
1 | | ablfac.1 |
. . 3
β’ (π β πΊ β Abel) |
2 | | ablgrp 19647 |
. . 3
β’ (πΊ β Abel β πΊ β Grp) |
3 | | ablfac.b |
. . . 4
β’ π΅ = (BaseβπΊ) |
4 | 3 | subgid 19002 |
. . 3
β’ (πΊ β Grp β π΅ β (SubGrpβπΊ)) |
5 | | ablfac.c |
. . . 4
β’ πΆ = {π β (SubGrpβπΊ) β£ (πΊ βΎs π) β (CycGrp β© ran pGrp
)} |
6 | | ablfac.2 |
. . . 4
β’ (π β π΅ β Fin) |
7 | | ablfac.o |
. . . 4
β’ π = (odβπΊ) |
8 | | ablfac.a |
. . . 4
β’ π΄ = {π€ β β β£ π€ β₯ (β―βπ΅)} |
9 | | ablfac.s |
. . . 4
β’ π = (π β π΄ β¦ {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))}) |
10 | | ablfac.w |
. . . 4
β’ π = (π β (SubGrpβπΊ) β¦ {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π)}) |
11 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem1 19949 |
. . 3
β’ (π΅ β (SubGrpβπΊ) β (πβπ΅) = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π΅)}) |
12 | 1, 2, 4, 11 | 4syl 19 |
. 2
β’ (π β (πβπ΅) = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π΅)}) |
13 | | ablfaclem2.f |
. . . . . . . . . . . . . 14
β’ (π β πΉ:π΄βΆWord πΆ) |
14 | 13 | ffvelcdmda 7083 |
. . . . . . . . . . . . 13
β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β Word πΆ) |
15 | | wrdf 14465 |
. . . . . . . . . . . . 13
β’ ((πΉβπ¦) β Word πΆ β (πΉβπ¦):(0..^(β―β(πΉβπ¦)))βΆπΆ) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β π΄) β (πΉβπ¦):(0..^(β―β(πΉβπ¦)))βΆπΆ) |
17 | 16 | ffdmd 6745 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β π΄) β (πΉβπ¦):dom (πΉβπ¦)βΆπΆ) |
18 | 17 | ffvelcdmda 7083 |
. . . . . . . . . 10
β’ (((π β§ π¦ β π΄) β§ π§ β dom (πΉβπ¦)) β ((πΉβπ¦)βπ§) β πΆ) |
19 | 18 | anasss 467 |
. . . . . . . . 9
β’ ((π β§ (π¦ β π΄ β§ π§ β dom (πΉβπ¦))) β ((πΉβπ¦)βπ§) β πΆ) |
20 | 19 | ralrimivva 3200 |
. . . . . . . 8
β’ (π β βπ¦ β π΄ βπ§ β dom (πΉβπ¦)((πΉβπ¦)βπ§) β πΆ) |
21 | | eqid 2732 |
. . . . . . . . 9
β’ (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) = (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) |
22 | 21 | fmpox 8049 |
. . . . . . . 8
β’
(βπ¦ β
π΄ βπ§ β dom (πΉβπ¦)((πΉβπ¦)βπ§) β πΆ β (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)):βͺ π¦ β π΄ ({π¦} Γ dom (πΉβπ¦))βΆπΆ) |
23 | 20, 22 | sylib 217 |
. . . . . . 7
β’ (π β (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)):βͺ π¦ β π΄ ({π¦} Γ dom (πΉβπ¦))βΆπΆ) |
24 | | ablfaclem2.l |
. . . . . . . 8
β’ πΏ = βͺ π¦ β π΄ ({π¦} Γ dom (πΉβπ¦)) |
25 | 24 | feq2i 6706 |
. . . . . . 7
β’ ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)):πΏβΆπΆ β (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)):βͺ π¦ β π΄ ({π¦} Γ dom (πΉβπ¦))βΆπΆ) |
26 | 23, 25 | sylibr 233 |
. . . . . 6
β’ (π β (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)):πΏβΆπΆ) |
27 | | ablfaclem2.g |
. . . . . . 7
β’ (π β π»:(0..^(β―βπΏ))β1-1-ontoβπΏ) |
28 | | f1of 6830 |
. . . . . . 7
β’ (π»:(0..^(β―βπΏ))β1-1-ontoβπΏ β π»:(0..^(β―βπΏ))βΆπΏ) |
29 | 27, 28 | syl 17 |
. . . . . 6
β’ (π β π»:(0..^(β―βπΏ))βΆπΏ) |
30 | | fco 6738 |
. . . . . 6
β’ (((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)):πΏβΆπΆ β§ π»:(0..^(β―βπΏ))βΆπΏ) β ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»):(0..^(β―βπΏ))βΆπΆ) |
31 | 26, 29, 30 | syl2anc 584 |
. . . . 5
β’ (π β ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»):(0..^(β―βπΏ))βΆπΆ) |
32 | | iswrdi 14464 |
. . . . 5
β’ (((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»):(0..^(β―βπΏ))βΆπΆ β ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β Word πΆ) |
33 | 31, 32 | syl 17 |
. . . 4
β’ (π β ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β Word πΆ) |
34 | | ablfaclem2.q |
. . . . . . . . . . . . . . 15
β’ (π β βπ¦ β π΄ (πΉβπ¦) β (πβ(πβπ¦))) |
35 | 34 | r19.21bi 3248 |
. . . . . . . . . . . . . 14
β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β (πβ(πβπ¦))) |
36 | 8 | ssrab3 4079 |
. . . . . . . . . . . . . . . . . . 19
β’ π΄ β
β |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
β’ (π β π΄ β β) |
38 | 3, 7, 9, 1, 6, 37 | ablfac1b 19934 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΊdom DProd π) |
39 | 3 | fvexi 6902 |
. . . . . . . . . . . . . . . . . . . 20
β’ π΅ β V |
40 | 39 | rabex 5331 |
. . . . . . . . . . . . . . . . . . 19
β’ {π₯ β π΅ β£ (πβπ₯) β₯ (πβ(π pCnt (β―βπ΅)))} β V |
41 | 40, 9 | dmmpti 6691 |
. . . . . . . . . . . . . . . . . 18
β’ dom π = π΄ |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . 17
β’ (π β dom π = π΄) |
43 | 38, 42 | dprdf2 19871 |
. . . . . . . . . . . . . . . 16
β’ (π β π:π΄βΆ(SubGrpβπΊ)) |
44 | 43 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π¦ β π΄) β (πβπ¦) β (SubGrpβπΊ)) |
45 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem1 19949 |
. . . . . . . . . . . . . . 15
β’ ((πβπ¦) β (SubGrpβπΊ) β (πβ(πβπ¦)) = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ¦))}) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π β§ π¦ β π΄) β (πβ(πβπ¦)) = {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ¦))}) |
47 | 35, 46 | eleqtrd 2835 |
. . . . . . . . . . . . 13
β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ¦))}) |
48 | | breq2 5151 |
. . . . . . . . . . . . . . . 16
β’ (π = (πΉβπ¦) β (πΊdom DProd π β πΊdom DProd (πΉβπ¦))) |
49 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
β’ (π = (πΉβπ¦) β (πΊ DProd π ) = (πΊ DProd (πΉβπ¦))) |
50 | 49 | eqeq1d 2734 |
. . . . . . . . . . . . . . . 16
β’ (π = (πΉβπ¦) β ((πΊ DProd π ) = (πβπ¦) β (πΊ DProd (πΉβπ¦)) = (πβπ¦))) |
51 | 48, 50 | anbi12d 631 |
. . . . . . . . . . . . . . 15
β’ (π = (πΉβπ¦) β ((πΊdom DProd π β§ (πΊ DProd π ) = (πβπ¦)) β (πΊdom DProd (πΉβπ¦) β§ (πΊ DProd (πΉβπ¦)) = (πβπ¦)))) |
52 | 51 | elrab 3682 |
. . . . . . . . . . . . . 14
β’ ((πΉβπ¦) β {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ¦))} β ((πΉβπ¦) β Word πΆ β§ (πΊdom DProd (πΉβπ¦) β§ (πΊ DProd (πΉβπ¦)) = (πβπ¦)))) |
53 | 52 | simprbi 497 |
. . . . . . . . . . . . 13
β’ ((πΉβπ¦) β {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = (πβπ¦))} β (πΊdom DProd (πΉβπ¦) β§ (πΊ DProd (πΉβπ¦)) = (πβπ¦))) |
54 | 47, 53 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β π΄) β (πΊdom DProd (πΉβπ¦) β§ (πΊ DProd (πΉβπ¦)) = (πβπ¦))) |
55 | 54 | simpld 495 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β π΄) β πΊdom DProd (πΉβπ¦)) |
56 | | dprdf 19870 |
. . . . . . . . . . 11
β’ (πΊdom DProd (πΉβπ¦) β (πΉβπ¦):dom (πΉβπ¦)βΆ(SubGrpβπΊ)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π¦ β π΄) β (πΉβπ¦):dom (πΉβπ¦)βΆ(SubGrpβπΊ)) |
58 | 57 | ffvelcdmda 7083 |
. . . . . . . . 9
β’ (((π β§ π¦ β π΄) β§ π§ β dom (πΉβπ¦)) β ((πΉβπ¦)βπ§) β (SubGrpβπΊ)) |
59 | 58 | anasss 467 |
. . . . . . . 8
β’ ((π β§ (π¦ β π΄ β§ π§ β dom (πΉβπ¦))) β ((πΉβπ¦)βπ§) β (SubGrpβπΊ)) |
60 | 57 | feqmptd 6957 |
. . . . . . . . 9
β’ ((π β§ π¦ β π΄) β (πΉβπ¦) = (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))) |
61 | 55, 60 | breqtrd 5173 |
. . . . . . . 8
β’ ((π β§ π¦ β π΄) β πΊdom DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))) |
62 | 43 | feqmptd 6957 |
. . . . . . . . . 10
β’ (π β π = (π¦ β π΄ β¦ (πβπ¦))) |
63 | 60 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β π΄) β (πΊ DProd (πΉβπ¦)) = (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)))) |
64 | 54 | simprd 496 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β π΄) β (πΊ DProd (πΉβπ¦)) = (πβπ¦)) |
65 | 63, 64 | eqtr3d 2774 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β π΄) β (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))) = (πβπ¦)) |
66 | 65 | mpteq2dva 5247 |
. . . . . . . . . 10
β’ (π β (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)))) = (π¦ β π΄ β¦ (πβπ¦))) |
67 | 62, 66 | eqtr4d 2775 |
. . . . . . . . 9
β’ (π β π = (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))))) |
68 | 38, 67 | breqtrd 5173 |
. . . . . . . 8
β’ (π β πΊdom DProd (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))))) |
69 | 59, 61, 68 | dprd2d2 19908 |
. . . . . . 7
β’ (π β (πΊdom DProd (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β§ (πΊ DProd (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))) = (πΊ DProd (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))))))) |
70 | 69 | simpld 495 |
. . . . . 6
β’ (π β πΊdom DProd (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))) |
71 | 26 | fdmd 6725 |
. . . . . 6
β’ (π β dom (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) = πΏ) |
72 | 70, 71, 27 | dprdf1o 19896 |
. . . . 5
β’ (π β (πΊdom DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β§ (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) = (πΊ DProd (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))))) |
73 | 72 | simpld 495 |
. . . 4
β’ (π β πΊdom DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) |
74 | 72 | simprd 496 |
. . . . 5
β’ (π β (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) = (πΊ DProd (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)))) |
75 | 69 | simprd 496 |
. . . . 5
β’ (π β (πΊ DProd (π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))) = (πΊ DProd (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)))))) |
76 | 67 | oveq2d 7421 |
. . . . . 6
β’ (π β (πΊ DProd π) = (πΊ DProd (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)))))) |
77 | | ssidd 4004 |
. . . . . . 7
β’ (π β π΄ β π΄) |
78 | 3, 7, 9, 1, 6, 37,
8, 77 | ablfac1c 19935 |
. . . . . 6
β’ (π β (πΊ DProd π) = π΅) |
79 | 76, 78 | eqtr3d 2774 |
. . . . 5
β’ (π β (πΊ DProd (π¦ β π΄ β¦ (πΊ DProd (π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§))))) = π΅) |
80 | 74, 75, 79 | 3eqtrd 2776 |
. . . 4
β’ (π β (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) = π΅) |
81 | | breq2 5151 |
. . . . . 6
β’ (π = ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β (πΊdom DProd π β πΊdom DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»))) |
82 | | oveq2 7413 |
. . . . . . 7
β’ (π = ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β (πΊ DProd π ) = (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»))) |
83 | 82 | eqeq1d 2734 |
. . . . . 6
β’ (π = ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β ((πΊ DProd π ) = π΅ β (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) = π΅)) |
84 | 81, 83 | anbi12d 631 |
. . . . 5
β’ (π = ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β ((πΊdom DProd π β§ (πΊ DProd π ) = π΅) β (πΊdom DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β§ (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) = π΅))) |
85 | 84 | rspcev 3612 |
. . . 4
β’ ((((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β Word πΆ β§ (πΊdom DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π») β§ (πΊ DProd ((π¦ β π΄, π§ β dom (πΉβπ¦) β¦ ((πΉβπ¦)βπ§)) β π»)) = π΅)) β βπ β Word πΆ(πΊdom DProd π β§ (πΊ DProd π ) = π΅)) |
86 | 33, 73, 80, 85 | syl12anc 835 |
. . 3
β’ (π β βπ β Word πΆ(πΊdom DProd π β§ (πΊ DProd π ) = π΅)) |
87 | | rabn0 4384 |
. . 3
β’ ({π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π΅)} β β
β βπ β Word πΆ(πΊdom DProd π β§ (πΊ DProd π ) = π΅)) |
88 | 86, 87 | sylibr 233 |
. 2
β’ (π β {π β Word πΆ β£ (πΊdom DProd π β§ (πΊ DProd π ) = π΅)} β β
) |
89 | 12, 88 | eqnetrd 3008 |
1
β’ (π β (πβπ΅) β β
) |