MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Visualization version   GIF version

Theorem ablfaclem2 20018
Description: Lemma for ablfac 20020. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b 𝐵 = (Base‘𝐺)
ablfac.c 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
ablfac.1 (𝜑𝐺 ∈ Abel)
ablfac.2 (𝜑𝐵 ∈ Fin)
ablfac.o 𝑂 = (od‘𝐺)
ablfac.a 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac.w 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
ablfaclem2.f (𝜑𝐹:𝐴⟶Word 𝐶)
ablfaclem2.q (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
ablfaclem2.l 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
ablfaclem2.g (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
Assertion
Ref Expression
ablfaclem2 (𝜑 → (𝑊𝐵) ≠ ∅)
Distinct variable groups:   𝑠,𝑝,𝑥,𝑦,𝐴   𝐹,𝑠   𝑔,𝑟,𝑠,𝑦,𝑆   𝑔,𝑝,𝑤,𝑥,𝐵,𝑟,𝑠   𝑂,𝑝,𝑥   𝐶,𝑔,𝑝,𝑠   𝑦,𝑤,𝐶,𝑥   𝑊,𝑝,𝑤,𝑥,𝑦   𝐻,𝑠   𝜑,𝑝,𝑠,𝑤,𝑥,𝑦   𝑔,𝐺,𝑝,𝑟,𝑠,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑔,𝑟)   𝐴(𝑤,𝑔,𝑟)   𝐵(𝑦)   𝐶(𝑟)   𝑆(𝑥,𝑤,𝑝)   𝐹(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐻(𝑥,𝑦,𝑤,𝑔,𝑟,𝑝)   𝐿(𝑥,𝑦,𝑤,𝑔,𝑠,𝑟,𝑝)   𝑂(𝑦,𝑤,𝑔,𝑠,𝑟)   𝑊(𝑔,𝑠,𝑟)

Proof of Theorem ablfaclem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . 3 (𝜑𝐺 ∈ Abel)
2 ablgrp 19715 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3 ablfac.b . . . 4 𝐵 = (Base‘𝐺)
43subgid 19060 . . 3 (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
5 ablfac.c . . . 4 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺s 𝑟) ∈ (CycGrp ∩ ran pGrp )}
6 ablfac.2 . . . 4 (𝜑𝐵 ∈ Fin)
7 ablfac.o . . . 4 𝑂 = (od‘𝐺)
8 ablfac.a . . . 4 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
9 ablfac.s . . . 4 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
10 ablfac.w . . . 4 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)})
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 20017 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
121, 2, 4, 114syl 19 . 2 (𝜑 → (𝑊𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)})
13 ablfaclem2.f . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶Word 𝐶)
1413ffvelcdmda 7056 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ Word 𝐶)
15 wrdf 14483 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ Word 𝐶 → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1614, 15syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐹𝑦):(0..^(♯‘(𝐹𝑦)))⟶𝐶)
1716ffdmd 6718 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶𝐶)
1817ffvelcdmda 7056 . . . . . . . . . 10 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
1918anasss 466 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ 𝐶)
2019ralrimivva 3180 . . . . . . . 8 (𝜑 → ∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶)
21 eqid 2729 . . . . . . . . 9 (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))
2221fmpox 8046 . . . . . . . 8 (∀𝑦𝐴𝑧 ∈ dom (𝐹𝑦)((𝐹𝑦)‘𝑧) ∈ 𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2320, 22sylib 218 . . . . . . 7 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
24 ablfaclem2.l . . . . . . . 8 𝐿 = 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))
2524feq2i 6680 . . . . . . 7 ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶 ↔ (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)): 𝑦𝐴 ({𝑦} × dom (𝐹𝑦))⟶𝐶)
2623, 25sylibr 234 . . . . . 6 (𝜑 → (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶)
27 ablfaclem2.g . . . . . . 7 (𝜑𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿)
28 f1of 6800 . . . . . . 7 (𝐻:(0..^(♯‘𝐿))–1-1-onto𝐿𝐻:(0..^(♯‘𝐿))⟶𝐿)
2927, 28syl 17 . . . . . 6 (𝜑𝐻:(0..^(♯‘𝐿))⟶𝐿)
30 fco 6712 . . . . . 6 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)):𝐿𝐶𝐻:(0..^(♯‘𝐿))⟶𝐿) → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
3126, 29, 30syl2anc 584 . . . . 5 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶)
32 iswrdi 14482 . . . . 5 (((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
3331, 32syl 17 . . . 4 (𝜑 → ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶)
34 ablfaclem2.q . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
3534r19.21bi 3229 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ (𝑊‘(𝑆𝑦)))
368ssrab3 4045 . . . . . . . . . . . . . . . . . . 19 𝐴 ⊆ ℙ
3736a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℙ)
383, 7, 9, 1, 6, 37ablfac1b 20002 . . . . . . . . . . . . . . . . 17 (𝜑𝐺dom DProd 𝑆)
393fvexi 6872 . . . . . . . . . . . . . . . . . . . 20 𝐵 ∈ V
4039rabex 5294 . . . . . . . . . . . . . . . . . . 19 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
4140, 9dmmpti 6662 . . . . . . . . . . . . . . . . . 18 dom 𝑆 = 𝐴
4241a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝑆 = 𝐴)
4338, 42dprdf2 19939 . . . . . . . . . . . . . . . 16 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
4443ffvelcdmda 7056 . . . . . . . . . . . . . . 15 ((𝜑𝑦𝐴) → (𝑆𝑦) ∈ (SubGrp‘𝐺))
453, 5, 1, 6, 7, 8, 9, 10ablfaclem1 20017 . . . . . . . . . . . . . . 15 ((𝑆𝑦) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
4644, 45syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑦𝐴) → (𝑊‘(𝑆𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
4735, 46eleqtrd 2830 . . . . . . . . . . . . 13 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))})
48 breq2 5111 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → (𝐺dom DProd 𝑠𝐺dom DProd (𝐹𝑦)))
49 oveq2 7395 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑦) → (𝐺 DProd 𝑠) = (𝐺 DProd (𝐹𝑦)))
5049eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑦) → ((𝐺 DProd 𝑠) = (𝑆𝑦) ↔ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5148, 50anbi12d 632 . . . . . . . . . . . . . . 15 (𝑠 = (𝐹𝑦) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦)) ↔ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5251elrab 3659 . . . . . . . . . . . . . 14 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} ↔ ((𝐹𝑦) ∈ Word 𝐶 ∧ (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))))
5352simprbi 496 . . . . . . . . . . . . 13 ((𝐹𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆𝑦))} → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5447, 53syl 17 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺dom DProd (𝐹𝑦) ∧ (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦)))
5554simpld 494 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝐹𝑦))
56 dprdf 19938 . . . . . . . . . . 11 (𝐺dom DProd (𝐹𝑦) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
5755, 56syl 17 . . . . . . . . . 10 ((𝜑𝑦𝐴) → (𝐹𝑦):dom (𝐹𝑦)⟶(SubGrp‘𝐺))
5857ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑧 ∈ dom (𝐹𝑦)) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
5958anasss 466 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ dom (𝐹𝑦))) → ((𝐹𝑦)‘𝑧) ∈ (SubGrp‘𝐺))
6057feqmptd 6929 . . . . . . . . 9 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6155, 60breqtrd 5133 . . . . . . . 8 ((𝜑𝑦𝐴) → 𝐺dom DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
6243feqmptd 6929 . . . . . . . . . 10 (𝜑𝑆 = (𝑦𝐴 ↦ (𝑆𝑦)))
6360oveq2d 7403 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
6454simprd 495 . . . . . . . . . . . 12 ((𝜑𝑦𝐴) → (𝐺 DProd (𝐹𝑦)) = (𝑆𝑦))
6563, 64eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑦𝐴) → (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝑆𝑦))
6665mpteq2dva 5200 . . . . . . . . . 10 (𝜑 → (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))) = (𝑦𝐴 ↦ (𝑆𝑦)))
6762, 66eqtr4d 2767 . . . . . . . . 9 (𝜑𝑆 = (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
6838, 67breqtrd 5133 . . . . . . . 8 (𝜑𝐺dom DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
6959, 61, 68dprd2d2 19976 . . . . . . 7 (𝜑 → (𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∧ (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))))
7069simpld 494 . . . . . 6 (𝜑𝐺dom DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))
7126fdmd 6698 . . . . . 6 (𝜑 → dom (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) = 𝐿)
7270, 71, 27dprdf1o 19964 . . . . 5 (𝜑 → (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)))))
7372simpld 494 . . . 4 (𝜑𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻))
7472simprd 495 . . . . 5 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))
7569simprd 495 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
7667oveq2d 7403 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))))
77 ssidd 3970 . . . . . . 7 (𝜑𝐴𝐴)
783, 7, 9, 1, 6, 37, 8, 77ablfac1c 20003 . . . . . 6 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
7976, 78eqtr3d 2766 . . . . 5 (𝜑 → (𝐺 DProd (𝑦𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧))))) = 𝐵)
8074, 75, 793eqtrd 2768 . . . 4 (𝜑 → (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)
81 breq2 5111 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺dom DProd 𝑠𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
82 oveq2 7395 . . . . . . 7 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → (𝐺 DProd 𝑠) = (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)))
8382eqeq1d 2731 . . . . . 6 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺 DProd 𝑠) = 𝐵 ↔ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵))
8481, 83anbi12d 632 . . . . 5 (𝑠 = ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵) ↔ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)))
8584rspcev 3588 . . . 4 ((((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶 ∧ (𝐺dom DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦𝐴, 𝑧 ∈ dom (𝐹𝑦) ↦ ((𝐹𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
8633, 73, 80, 85syl12anc 836 . . 3 (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
87 rabn0 4352 . . 3 ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵))
8886, 87sylibr 234 . 2 (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅)
8912, 88eqnetrd 2992 1 (𝜑 → (𝑊𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  c0 4296  {csn 4589   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  0cc0 11068  ..^cfzo 13615  cexp 14026  chash 14295  Word cword 14478  cdvds 16222  cprime 16641   pCnt cpc 16807  Basecbs 17179  s cress 17200  Grpcgrp 18865  SubGrpcsubg 19052  odcod 19454   pGrp cpgp 19456  Abelcabl 19711  CycGrpccyg 19807   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-eqg 19057  df-ghm 19145  df-gim 19191  df-ga 19222  df-cntz 19249  df-oppg 19278  df-od 19458  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-abl 19713  df-dprd 19927
This theorem is referenced by:  ablfaclem3  20019
  Copyright terms: Public domain W3C validator