Step | Hyp | Ref
| Expression |
1 | | ablfac.1 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Abel) |
2 | | ablgrp 18983 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
3 | | ablfac.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
4 | 3 | subgid 18353 |
. . 3
⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) |
5 | | ablfac.c |
. . . 4
⊢ 𝐶 = {𝑟 ∈ (SubGrp‘𝐺) ∣ (𝐺 ↾s 𝑟) ∈ (CycGrp ∩ ran pGrp
)} |
6 | | ablfac.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Fin) |
7 | | ablfac.o |
. . . 4
⊢ 𝑂 = (od‘𝐺) |
8 | | ablfac.a |
. . . 4
⊢ 𝐴 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} |
9 | | ablfac.s |
. . . 4
⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
10 | | ablfac.w |
. . . 4
⊢ 𝑊 = (𝑔 ∈ (SubGrp‘𝐺) ↦ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝑔)}) |
11 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem1 19280 |
. . 3
⊢ (𝐵 ∈ (SubGrp‘𝐺) → (𝑊‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)}) |
12 | 1, 2, 4, 11 | 4syl 19 |
. 2
⊢ (𝜑 → (𝑊‘𝐵) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)}) |
13 | | ablfaclem2.f |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝐴⟶Word 𝐶) |
14 | 13 | ffvelrnda 6847 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ Word 𝐶) |
15 | | wrdf 13923 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑦) ∈ Word 𝐶 → (𝐹‘𝑦):(0..^(♯‘(𝐹‘𝑦)))⟶𝐶) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦):(0..^(♯‘(𝐹‘𝑦)))⟶𝐶) |
17 | 16 | ffdmd 6526 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦):dom (𝐹‘𝑦)⟶𝐶) |
18 | 17 | ffvelrnda 6847 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ dom (𝐹‘𝑦)) → ((𝐹‘𝑦)‘𝑧) ∈ 𝐶) |
19 | 18 | anasss 470 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ dom (𝐹‘𝑦))) → ((𝐹‘𝑦)‘𝑧) ∈ 𝐶) |
20 | 19 | ralrimivva 3120 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ dom (𝐹‘𝑦)((𝐹‘𝑦)‘𝑧) ∈ 𝐶) |
21 | | eqid 2758 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) = (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) |
22 | 21 | fmpox 7774 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 ∀𝑧 ∈ dom (𝐹‘𝑦)((𝐹‘𝑦)‘𝑧) ∈ 𝐶 ↔ (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)):∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝐹‘𝑦))⟶𝐶) |
23 | 20, 22 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)):∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝐹‘𝑦))⟶𝐶) |
24 | | ablfaclem2.l |
. . . . . . . 8
⊢ 𝐿 = ∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝐹‘𝑦)) |
25 | 24 | feq2i 6494 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)):𝐿⟶𝐶 ↔ (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)):∪ 𝑦 ∈ 𝐴 ({𝑦} × dom (𝐹‘𝑦))⟶𝐶) |
26 | 23, 25 | sylibr 237 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)):𝐿⟶𝐶) |
27 | | ablfaclem2.g |
. . . . . . 7
⊢ (𝜑 → 𝐻:(0..^(♯‘𝐿))–1-1-onto→𝐿) |
28 | | f1of 6606 |
. . . . . . 7
⊢ (𝐻:(0..^(♯‘𝐿))–1-1-onto→𝐿 → 𝐻:(0..^(♯‘𝐿))⟶𝐿) |
29 | 27, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐻:(0..^(♯‘𝐿))⟶𝐿) |
30 | | fco 6520 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)):𝐿⟶𝐶 ∧ 𝐻:(0..^(♯‘𝐿))⟶𝐿) → ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶) |
31 | 26, 29, 30 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶) |
32 | | iswrdi 13922 |
. . . . 5
⊢ (((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻):(0..^(♯‘𝐿))⟶𝐶 → ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶) |
33 | 31, 32 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶) |
34 | | ablfaclem2.q |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ (𝑊‘(𝑆‘𝑦))) |
35 | 34 | r19.21bi 3137 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ (𝑊‘(𝑆‘𝑦))) |
36 | 8 | ssrab3 3988 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐴 ⊆
ℙ |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ ℙ) |
38 | 3, 7, 9, 1, 6, 37 | ablfac1b 19265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
39 | 3 | fvexi 6676 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐵 ∈ V |
40 | 39 | rabex 5205 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
41 | 40, 9 | dmmpti 6479 |
. . . . . . . . . . . . . . . . . 18
⊢ dom 𝑆 = 𝐴 |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝑆 = 𝐴) |
43 | 38, 42 | dprdf2 19202 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
44 | 43 | ffvelrnda 6847 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑆‘𝑦) ∈ (SubGrp‘𝐺)) |
45 | 3, 5, 1, 6, 7, 8, 9, 10 | ablfaclem1 19280 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆‘𝑦) ∈ (SubGrp‘𝐺) → (𝑊‘(𝑆‘𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑦))}) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑊‘(𝑆‘𝑦)) = {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑦))}) |
47 | 35, 46 | eleqtrd 2854 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑦))}) |
48 | | breq2 5039 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐹‘𝑦) → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd (𝐹‘𝑦))) |
49 | | oveq2 7163 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐹‘𝑦) → (𝐺 DProd 𝑠) = (𝐺 DProd (𝐹‘𝑦))) |
50 | 49 | eqeq1d 2760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐹‘𝑦) → ((𝐺 DProd 𝑠) = (𝑆‘𝑦) ↔ (𝐺 DProd (𝐹‘𝑦)) = (𝑆‘𝑦))) |
51 | 48, 50 | anbi12d 633 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = (𝐹‘𝑦) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑦)) ↔ (𝐺dom DProd (𝐹‘𝑦) ∧ (𝐺 DProd (𝐹‘𝑦)) = (𝑆‘𝑦)))) |
52 | 51 | elrab 3604 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑦))} ↔ ((𝐹‘𝑦) ∈ Word 𝐶 ∧ (𝐺dom DProd (𝐹‘𝑦) ∧ (𝐺 DProd (𝐹‘𝑦)) = (𝑆‘𝑦)))) |
53 | 52 | simprbi 500 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑦) ∈ {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = (𝑆‘𝑦))} → (𝐺dom DProd (𝐹‘𝑦) ∧ (𝐺 DProd (𝐹‘𝑦)) = (𝑆‘𝑦))) |
54 | 47, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺dom DProd (𝐹‘𝑦) ∧ (𝐺 DProd (𝐹‘𝑦)) = (𝑆‘𝑦))) |
55 | 54 | simpld 498 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐺dom DProd (𝐹‘𝑦)) |
56 | | dprdf 19201 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd (𝐹‘𝑦) → (𝐹‘𝑦):dom (𝐹‘𝑦)⟶(SubGrp‘𝐺)) |
57 | 55, 56 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦):dom (𝐹‘𝑦)⟶(SubGrp‘𝐺)) |
58 | 57 | ffvelrnda 6847 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ dom (𝐹‘𝑦)) → ((𝐹‘𝑦)‘𝑧) ∈ (SubGrp‘𝐺)) |
59 | 58 | anasss 470 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ dom (𝐹‘𝑦))) → ((𝐹‘𝑦)‘𝑧) ∈ (SubGrp‘𝐺)) |
60 | 57 | feqmptd 6725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))) |
61 | 55, 60 | breqtrd 5061 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐺dom DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))) |
62 | 43 | feqmptd 6725 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 = (𝑦 ∈ 𝐴 ↦ (𝑆‘𝑦))) |
63 | 60 | oveq2d 7171 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺 DProd (𝐹‘𝑦)) = (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)))) |
64 | 54 | simprd 499 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺 DProd (𝐹‘𝑦)) = (𝑆‘𝑦)) |
65 | 63, 64 | eqtr3d 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))) = (𝑆‘𝑦)) |
66 | 65 | mpteq2dva 5130 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)))) = (𝑦 ∈ 𝐴 ↦ (𝑆‘𝑦))) |
67 | 62, 66 | eqtr4d 2796 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 = (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))))) |
68 | 38, 67 | breqtrd 5061 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))))) |
69 | 59, 61, 68 | dprd2d2 19239 |
. . . . . . 7
⊢ (𝜑 → (𝐺dom DProd (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∧ (𝐺 DProd (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))) = (𝐺 DProd (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))))))) |
70 | 69 | simpld 498 |
. . . . . 6
⊢ (𝜑 → 𝐺dom DProd (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))) |
71 | 26 | fdmd 6512 |
. . . . . 6
⊢ (𝜑 → dom (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) = 𝐿) |
72 | 70, 71, 27 | dprdf1o 19227 |
. . . . 5
⊢ (𝜑 → (𝐺dom DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))))) |
73 | 72 | simpld 498 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) |
74 | 72 | simprd 499 |
. . . . 5
⊢ (𝜑 → (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) = (𝐺 DProd (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)))) |
75 | 69 | simprd 499 |
. . . . 5
⊢ (𝜑 → (𝐺 DProd (𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))) = (𝐺 DProd (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)))))) |
76 | 67 | oveq2d 7171 |
. . . . . 6
⊢ (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)))))) |
77 | | ssidd 3917 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ 𝐴) |
78 | 3, 7, 9, 1, 6, 37,
8, 77 | ablfac1c 19266 |
. . . . . 6
⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝐵) |
79 | 76, 78 | eqtr3d 2795 |
. . . . 5
⊢ (𝜑 → (𝐺 DProd (𝑦 ∈ 𝐴 ↦ (𝐺 DProd (𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧))))) = 𝐵) |
80 | 74, 75, 79 | 3eqtrd 2797 |
. . . 4
⊢ (𝜑 → (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵) |
81 | | breq2 5039 |
. . . . . 6
⊢ (𝑠 = ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) → (𝐺dom DProd 𝑠 ↔ 𝐺dom DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻))) |
82 | | oveq2 7163 |
. . . . . . 7
⊢ (𝑠 = ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) → (𝐺 DProd 𝑠) = (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻))) |
83 | 82 | eqeq1d 2760 |
. . . . . 6
⊢ (𝑠 = ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺 DProd 𝑠) = 𝐵 ↔ (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) |
84 | 81, 83 | anbi12d 633 |
. . . . 5
⊢ (𝑠 = ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) → ((𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵) ↔ (𝐺dom DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵))) |
85 | 84 | rspcev 3543 |
. . . 4
⊢ ((((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) ∈ Word 𝐶 ∧ (𝐺dom DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻) ∧ (𝐺 DProd ((𝑦 ∈ 𝐴, 𝑧 ∈ dom (𝐹‘𝑦) ↦ ((𝐹‘𝑦)‘𝑧)) ∘ 𝐻)) = 𝐵)) → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
86 | 33, 73, 80, 85 | syl12anc 835 |
. . 3
⊢ (𝜑 → ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
87 | | rabn0 4284 |
. . 3
⊢ ({𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅ ↔ ∃𝑠 ∈ Word 𝐶(𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)) |
88 | 86, 87 | sylibr 237 |
. 2
⊢ (𝜑 → {𝑠 ∈ Word 𝐶 ∣ (𝐺dom DProd 𝑠 ∧ (𝐺 DProd 𝑠) = 𝐵)} ≠ ∅) |
89 | 12, 88 | eqnetrd 3018 |
1
⊢ (𝜑 → (𝑊‘𝐵) ≠ ∅) |